Fiber Aggregation in Nanocomposites: Aggregation Degree and Its Linear Relation with the Percolation Threshold
Abstract
:1. Introduction
2. Model and Methods
2.1. Aggregation Degree
- The aggregation degree should be a single dimensionless index with physical meaning.
- The aggregation degree should be applicable to different aggregation topologies, from lump-like aggregating clusters to network-like aggregating clusters.
- The aggregation degree should have a one-to-one corresponding relation with the electrical property of the composites regardless of the distribution law of fibers.
2.2. Analysis of the Average Intersection Number
2.2.1. Two-Level Aggregation Model
2.2.2. Intersecting Probability in an Aggregating Cluster
2.2.3. Intersecting Probability in an RAE
2.3. Monte Carlo Simulations on the Percolation Threshold
3. Results and Discussion
3.1. Results of the Aggregation Degree
3.2. Linear Relation between the Aggregation Degree and the Percolation Threshold
3.3. Aggregation with Different Distributions
3.4. Comparison with Experimental Results
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Intersecting Probability of Fibers
Appendix B. The Process and Size Effect of the Monte Carlo Simulation on the Percolation Threshold
- Step 1. Generation of the 2D Network Models
- Step 2. Search for the Connecting Path
- If there is no fiber found, the network is not connected and the search process is stopped.
- If there are fibers found, mark these fibers as “fiber temp”.
- If there are, the network is connected and the search process is stopped.
- If there are not, move the fibers in “fiber temp” from the “search group” to the “input group”, and go to step (1) of Step 2.2.
- Step 3. Calculate the Connection Probability
- Step 4. Calculate the Percolation Threshold Using Boltzmann Function
Appendix C. Aggregation Degrees of Nanofiber Network with Different Densities
References
- Samareh, J.A.; Siochi, E.J. Systems analysis of carbon nanotubes: Opportunities and challenges for space applications. Nanotechnology 2017, 28, 372001. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.J.; Xu, L.; Jia, L.C.; Zhou, C.G.; Li, Z.M. Highly conductive and stretchable carbon nanotube/thermoplastic polyurethane composite for wearable heater. Compos. Sci. Technol. 2019, 181, 107695. [Google Scholar] [CrossRef]
- Wu, Z.C.; Chen, Z.H.; Du, X.; Logan, J.M.; Sippel, J.; Nikolou, M.; Kamaras, K. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276. [Google Scholar] [CrossRef]
- Hu, N.; Masuda, Z.; Yamamoto, G.; Fukunaga, H.; Hashida, T.; Qiu, J. Effect of fabrication process on electrical properties of polymer/multi-wall carbon nanotube nanocomposites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 893–903. [Google Scholar] [CrossRef]
- Shi, Y.D.; Li, J.; Tan, Y.J.; Chen, Y.F.; Wang, M. Percolation behavior of electromagnetic interference shielding in polymer/multi-walled carbon nanotube nanocomposites. Compos. Sci. Technol. 2019, 170, 70–76. [Google Scholar] [CrossRef]
- Kumar, S.D.; Ravichandran, M.; Alagarsamy, S.; Chanakyan, C.; Meignanamoorthy, M.; Sakthivelu, S. Processing and properties of carbon nanotube reinforced composites: A review. Mater. Today Proc. 2020, 27, 1152–1156. [Google Scholar] [CrossRef]
- Gong, S.; Zhu, Z.H.; Meguid, S.A. Carbon nanotube agglomeration effect on piezoresistivity of polymer nanocomposites. Polymer 2014, 55, 5488–5499. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Pan, F.; Zhang, J. A Numerical Study on Electrical Percolation of Polymer-Matrix Composites with Hybrid Fillers of Carbon Nanotubes and Carbon Black. J. Nanomater. 2014, 2014, 614797. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Lu, W.; Gouma, P.I.; Xu, Z.; Wang, L. Theoretical Prediction of Effective Stiffness of Nonwoven Fibrous Networks with Straight and Curved Nanofibers. Compos. Part A-Appl. Sci. Manuf. 2021, 143, 106311. [Google Scholar] [CrossRef]
- Wang, S.; Lin, J.; Xu, Z.; Xu, Z. Understanding macroscopic assemblies of carbon nanostructures with microstructural complexity. Compos. Part A-Appl. Sci. Manuf. 2021, 143, 106318. [Google Scholar] [CrossRef]
- Tang, Z.; Li, Y.; Huang, P.; Fu, Y.; Hu, N.; Fu, S. A new analytical model for predicting the electrical conductivity of carbon nanotube nanocomposites. Compos. Commun. 2021, 23, 100577. [Google Scholar] [CrossRef]
- Nanni, F.; Travaglia, P.; Valentini, M. Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites. Compos. Sci. Technol. 2009, 69, 485–490. [Google Scholar] [CrossRef]
- Duc, B.N.; Son, Y. Enhanced dispersion of multi walled carbon nanotubes by an extensional batch mixer in polymer/MWCNT nanocomposites. Compos. Commun. 2020, 21, 100420. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Xin, Z.; Luo, Y.; Wang, B.; Feng, X.; Mao, Z.; Sui, X. Poly(lactic acid)/carbon nanotube composites with enhanced electrical conductivity via a two-step dispersion strategy. Compos. Commun. 2022, 30, 101087. [Google Scholar] [CrossRef]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A-Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Ma, P.C.; Kim, J.K.; Tang, B.Z. Functionalization of carbon nanotubes using a silane coupling agent. Carbon 2006, 44, 3232–3238. [Google Scholar] [CrossRef] [Green Version]
- Haslam, M.D.; Raeymaekers, B. A composite index to quantify dispersion of carbon nanotubes in polymer-based composite materials. Compos. Part B Eng. 2013, 55, 16–21. [Google Scholar] [CrossRef]
- Jamali, S.; Paiva, M.C.; Covas, J.A. Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes. Polym. Test 2013, 32, 701–707. [Google Scholar] [CrossRef]
- Aguilar, J.O.; Bautista-Quijano, J.R.; Avilés, F. Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. J. Appl. Phys. 2010, 4, 292–299. [Google Scholar] [CrossRef]
- Kovacsa, J.Z.; Velagalaa, B.S.; Schulteb, K.; Bauhofera, W. Two percolation thresholds in carbon nanotube epoxy composites. Compos. Sci. Technol. 2007, 67, 922–928. [Google Scholar] [CrossRef]
- Krause, B.; Poetschke, P.; Haeussler, L. Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Compos. Sci. Technol. 2009, 69, 1505–1515. [Google Scholar] [CrossRef]
- Gbaguidi, A.; Namilae, S.; Kim, D. Stochastic percolation model for the effect of nanotube agglomeration on the conductivity and piezoresistivity of hybrid nanocomposites. Comput. Mater. Sci. 2019, 166, 9–19. [Google Scholar] [CrossRef]
- Hu, N.; Masuda, Z.; Yan, C.; Yamamoto, G.; Fukunaga, H.; Hashida, T. The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology 2008, 19, 215701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matos, M.A.S.; Tagarielli, V.L.; Pinho, S.T. On the electrical conductivity of composites with a polymeric matrix and a non-uniform concentration of carbon nanotubes. Compos. Sci. Technol. 2020, 188, 108003. [Google Scholar] [CrossRef]
- Lv, Z.; Huang, X.; Fan, D.; Zhou, P.; Zhang, X. Scalable manufacturing of conductive rubber nanocomposites with ultralow percolation threshold for strain sensing applications. Compos. Commun. 2021, 25, 100685. [Google Scholar] [CrossRef]
- Fu, X.; Wang, J.; Ding, J.; Wu, H.; Dong, Y.; Fu, Y. Quantitative evaluation of carbon nanotube dispersion through scanning electron microscopy images. Compos. Sci. Technol. 2013, 87, 170–173. [Google Scholar] [CrossRef]
- Bakshi, S.R.; Agarwal, A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 2011, 49, 533–544. [Google Scholar] [CrossRef]
- Moon, D.; Obrzut, J.; Douglas, J.F.; Lam, T.; Koziol, K.K.; Migler, K.B. Three dimensional cluster distributions in processed multi-wall carbon nanotube polymer composites. Polymer 2014, 55, 3270–3277. [Google Scholar] [CrossRef]
- Yazdanbakhsh, A.; Grasley, Z.; Tyson, B.; Al-Rub, R.K.A. Dispersion quantification of inclusions in composites. Compos. Part A-Appl. Sci. Manuf. 2011, 42, 75–83. [Google Scholar] [CrossRef]
- Bakshi, S.R.; Batista, R.G.; Agarwal, A. Quantification of carbon nanotube distribution and property correlation in nanocomposites. Compos. Part A-Appl. Sci. Manuf. 2009, 40, 1311–1318. [Google Scholar] [CrossRef]
- Pfeifer, S.; Bandaru, P.R. A Methodology for Quantitatively Characterizing the Dispersion of Nanostructures in Polymers and Composites. Mater. Res. Lett. 2014, 2, 166–175. [Google Scholar] [CrossRef]
- Rohm, K.; Bonab, V.S.; Manas-Zloczower, I. Quantitative evaluation of mixing using a refined Shannon entropy. Compos. Sci. Technol. 2020, 197, 108276. [Google Scholar] [CrossRef]
- Sul, I.H.; Youn, J.R.; Song, Y.S. Quantitative dispersion evaluation of carbon nanotubes using a new analysis protocol. Carbon 2011, 49, 1473–1478. [Google Scholar] [CrossRef]
- Gong, S.; Zhu, Z.H.; Li, J.; Meguid, S.A. Modeling and characterization of carbon nanotube agglomeration effect on electrical conductivity of carbon nanotube polymer composites. J. Appl. Phys. 2014, 116, 305202. [Google Scholar] [CrossRef]
- Alamusi; Hu, N.; Fukunaga, H.; Atobe, S.; Liu, Y.; Li, J. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 2011, 11, 10691–10723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balberg, I.; Anderson, C.; Alexander, S.; Wagner, N. Excluded volume and its relation to the onset of percolation. Phys. Rev. B 1984, 30, 3933. [Google Scholar] [CrossRef]
- Berhan, L.; Sastry, A.M. Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Phys. Rev. E 2007, 75, 041120. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Fei, P.; Guo, Z.; Liu, B.; Zhang, J. Stiffness threshold of randomly distributed carbon nanotube networks. J. Mech. Phys. Solids 2015, 84, 395–423. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, F.; Wang, S.; Liu, B.; Zhang, J. Theoretical estimation on the percolation threshold for polymer matrix composites with hybrid fillers. Compos. Struct. 2015, 124, 292–299. [Google Scholar] [CrossRef]
- Balberg, I.; Binenbaum, N.; Wagner, N. Percolation Thresholds in the Three-Dimensional Sticks System. Phys. Rev. Lett. 1984, 52, 1465–1468. [Google Scholar] [CrossRef]
- Pan, J.; Bian, L. Influence of agglomeration parameters on carbon nanotube composites. Acta Mech. 2017, 228, 2207–2217. [Google Scholar] [CrossRef]
- Li, J.; Ma, P.C.; Chow, W.S.; To, C.K.; Tang, B.Z.; Kim, J.K. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv. Funct. Mater. 2007, 17, 3207–3215. [Google Scholar] [CrossRef]
- Bao, W.S.; Meguid, S.A.; Zhu, Z.H.; Pan, Y.; Weng, G.J. A novel approach to predict the electrical conductivity of multifunctional nanocomposites. Mech. Mater. 2012, 46, 129–138. [Google Scholar] [CrossRef]
- Badaire, S.; Poulin, P.; Maugey, M.; Zakri, C. In Situ Measurements of Nanotube Dimensions in Suspensions by Depolarized Dynamic Light Scattering. Langmuir ACS J. Surf. Colloids 2004, 20, 10367–10370. [Google Scholar] [CrossRef]
- Hennrich, F.; Krupke, R.; Arnold, K.; Stütz, J.R.; Lebedkin, S.; Koch, T.; Schimmel, T.; Kappes, M.M. The mechanism of cavitation-induced scission of single-walled carbon nanotubes. J. Phys. Chem. B 2007, 111, 1932–1937. [Google Scholar] [CrossRef]
- Pike, G.; Seager, C. Percolation and conductivity: A computer study. I. Phys. Rev. B 1974, 10, 1421. [Google Scholar] [CrossRef]
- Kim, D.W.; Lim, J.H.; Yu, J. Efficient prediction of the electrical conductivity and percolation threshold of nanocomposite containing spherical particles with three-dimensional random representative volume elements by random filler removal. Compos. Part B Eng. 2019, 168, 387–397. [Google Scholar] [CrossRef]
- Chang, E.; Ameli, A.; Alian, A.R.; Mark, L.H.; Yu, K.; Wang, S.; Park, C.B. Percolation mechanism and effective conductivity of mechanically deformed 3-dimensional composite networks: Computational modeling and experimental verification. Compos. Part B-Eng. 2021, 207. [Google Scholar] [CrossRef]
- Theodosiou, T.C.; Saravanos, D.A. Numerical investigation of mechanisms affecting the piezoresistive properties of CNT-doped polymers using multi-scale models. Compos. Sci. Technol. 2010, 70, 1312–1320. [Google Scholar] [CrossRef]
- Jkw, S.; Kirk, J.E.; Kinloch, I.A.; Msp, S.; Windle, A.H.H. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 2003, 44, 5893–5899. [Google Scholar]
- Tiwari, M.; Billing, B.K.; Bedi, H.S.; Agnihotri, P.K. Quantification of carbon nanotube dispersion and its correlation with mechanical and thermal properties of epoxy nanocomposites. J. Appl. Polym. Sci. 2020, 137. [Google Scholar] [CrossRef]
- Voss, J. An Introduction to Statistical Computing: A Simulation-Based Approach; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Menzer, K.; Krause, B.; Boldt, R.; Kretzschmar, B.; Weidisch, R.; Pötschke, P. Percolation behaviour of multiwalled carbon nanotubes of altered length and primary agglomerate morphology in melt mixed isotactic polypropylene-based composites. Compos. Sci. Technol. 2011, 71, 1936–1943. [Google Scholar] [CrossRef]
- Socher, R.; Krause, B.; Müller, M.T.; Boldt, R.; Pötschke, P. The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites. Polymer 2012, 53, 495–504. [Google Scholar] [CrossRef]
- Dietrich, S. Introduction to Percolation Theory; Taylor & Francis: Abingdon, UK, 1992. [Google Scholar]
- Coupette, F.; Zhang, L.; Kuttich, B.; Chumakov, A.; Roth, S.V.; González-García, L.; Kraus, T.; Schilling, T. Percolation of rigid fractal carbon black aggregates. J. Chem. Phys. 2021, 155, 124902. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, B.; Pan, F.; Ding, B.; Zhang, F.; Ma, Y.; Chen, Y. Fiber Aggregation in Nanocomposites: Aggregation Degree and Its Linear Relation with the Percolation Threshold. Materials 2023, 16, 15. https://doi.org/10.3390/ma16010015
Cui B, Pan F, Ding B, Zhang F, Ma Y, Chen Y. Fiber Aggregation in Nanocomposites: Aggregation Degree and Its Linear Relation with the Percolation Threshold. Materials. 2023; 16(1):15. https://doi.org/10.3390/ma16010015
Chicago/Turabian StyleCui, Baorang, Fei Pan, Bin Ding, Feng Zhang, Yong Ma, and Yuli Chen. 2023. "Fiber Aggregation in Nanocomposites: Aggregation Degree and Its Linear Relation with the Percolation Threshold" Materials 16, no. 1: 15. https://doi.org/10.3390/ma16010015
APA StyleCui, B., Pan, F., Ding, B., Zhang, F., Ma, Y., & Chen, Y. (2023). Fiber Aggregation in Nanocomposites: Aggregation Degree and Its Linear Relation with the Percolation Threshold. Materials, 16(1), 15. https://doi.org/10.3390/ma16010015