Common Topological Features in Band Structure of RNiSb and RSb Compounds for R = Tb, Dy, Ho
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. TbNiSb and TbSb Intermetallic Compounds
3.2. DyNiSb and DySb Intermetallic Compounds
3.3. HoNiSb and HoSb Intermetallic Compounds
3.4. Magnetic Moments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hundley, M.F.; Thompson, J.D.; Canfield, P.C.; Fisk, Z. Electronic transport properties of the semimetallic heavy fermion YbBiPt. Phys. Rev. B 1997, 56, 8098–8102. [Google Scholar] [CrossRef]
- Gupta, S.; Suresh, K.G.; Nigam, A.K.; Lukoyanov, A.V. Magnetism in RRhGe (R = Tb, Dy, Er, Tm): An experimental and theoretical study. J. Alloys Compd. 2015, 640, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, Y.; Hu, R.; Kirshenbaum, K.; Hughes, A.; Syers, P.; Wang, X.; Wang, K.; Wang, R.; Saha, S.R.; Pratt, D.; et al. Topological RPdBi half-Heusler semimetals: A new family of noncentrosymmetric magnetic superconductors. Sci. Adv. 2015, 1, e1500242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlosiuk, O.; Kaczorowski, D.; Fabreges, X.; Gukasov, A.; Wisniewski, P. Antiferromagnetism and superconductivity in the half-Heusler semimetal HoPdBi. Sci. Rep. 2016, 6, 18797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirschberger, M.; Kushwaha, S.; Wang, Z.; Gibson, Q.; Liang, S.; Belvin, C.A.; Bernevig, B.A.; Cava, R.J.; Ong, N.P. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 2016, 15, 1161–1165. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Suresh, K.G.; Nigam, A.K.; Knyazev, Y.V.; Kuz’min, Y.I.; Lukoyanov, A.V. The magnetic, electronic and optical properties of HoRhGe. J. Phys. D Appl. Phys. 2014, 47, 365002. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.K.; Suresh, K.G.; Nirmala, R.; Nigam, A.K.; Malik, S.K. Correlation between magnetism and magnetocaloric effect in the intermetallic compound DyNiAl. J. Appl. Phys. 2006, 99, 08K904. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.K.; Suresh, K.G.; Nirmala, R.; Nigam, A.K.; Malik, S.K. Effect of magnetic polarons on the magnetic, magnetocaloric, and magnetoresistance properties of the intermetallic compound HoNiAl. J. Appl. Phys. 2007, 101, 093904. [Google Scholar] [CrossRef] [Green Version]
- Ciesielski, K.; Synoradzki, K.; Wolanska, I.; Stachowiak, P.; Kepinski, L.; Jezowski, A.; Tolinski, T.; Kaczorowski, D. High-temperature power factor of half-Heusler phases RENiSb (RE = Sc, Dy, Ho, Er, Tm, Lu). J. Alloys Compd. 2020, 816, 152596. [Google Scholar] [CrossRef]
- Gnida, D.; Ciesielski, K.; Kaczorowski, D. Origin of the negative temperature coefficient of resistivity in the half-Heusler antimonides LuNiSb and YPdSb. Phys. Rev. B 2021, 103, 174206. [Google Scholar] [CrossRef]
- Pierre, J.; Karla, I. Giant magnetoresistance in RENiSb semiconductors (RE = Tb, Dy, Ho). J. Magn. Magn. Mater. 2000, 217, 74–82. [Google Scholar] [CrossRef]
- Pierre, J.; Karla, I.; Kaczmarska, K. Giant magnetoresistance in Heusler-type rare earth and 3d semiconductors. Physica B Condens. Matter. 1999, 259–261, 845–846. [Google Scholar] [CrossRef]
- Pecharskii, V.K.; Pankevich, Y.V.; Bodak, O.I. Crystal structures of the compounds RNiSb with various rare earth elements. Sov. Phys. Crystallogr. 1983, 28, 97–98. [Google Scholar]
- Zhu, H.; He, R.; Mao, J.; Zhu, Q.; Li, C.; Sun, J.; Ren, W.; Wang, Y.; Liu, Z.; Tang, Z.; et al. Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency. Nat. Commun. 2018, 9, 2497. [Google Scholar] [CrossRef]
- Ciesielski, K.; Synoradzki, K.; Veremchuk, I.; Skokowski, P.; Szymański, D.; Grin, Y.; Kaczorowski, D. Thermoelectric Performance of the Half-Heusler Phases RNiSb (R=Sc,Dy,Er,Tm,Lu): High Mobility Ratio between Majority and Minority Charge Carriers. Phys. Rev. Appl. 2020, 14, 054046. [Google Scholar] [CrossRef]
- Kawano, K.; Kurosaki, K. Effect of Sn doping on the thermoelectric properties of ErNiSb-based 𝑝-type half-Heusler compound. Appl. Phys. Lett. 2007, 91, 062115. [Google Scholar] [CrossRef]
- Ciesielski, K.; Wolańska, I.; Synoradzki, K.; Szymański, D.; Kaczorowski, D. Mobility Ratio as a Probe for Guiding Discovery of Thermoelectric Materials: The Case of Half-Heusler Phase ScNiSb1-xTex. Phys. Rev. Appl. 2021, 15, 044046. [Google Scholar] [CrossRef]
- Jia, X.; Deng, Y.; Bao, X.; Yao, H.; Li, S.; Li, Z.; Chen, C.; Wang, X.; Mao, J.; Cao, F.; et al. Unsupervised machine learning for discovery of promising half-Heusler thermoelectric materials. Npj Comput. Mater. 2022, 8, 34. [Google Scholar] [CrossRef]
- Satyam, J.K.; Saini, S.M. Role of R-f states on electronic structure and thermoelectric performance of RNiSb (R = Gd, Er and Lu) half Heusler compounds: Narrow gap thermoelectric materials. Appl. Phys. A 2021, 127, 828. [Google Scholar] [CrossRef]
- Hartjes, K.; Jeitschko, W. Crystal structures and magnetic properties of the lanthanoid nickel antimonides LnNiSb (Ln = LaNd, Sm, GdTm, Lu). J. Alloys Compd. 1995, 226, 81–86. [Google Scholar] [CrossRef]
- Sahariya, J.; Kumar, P.; Bhamu, K.C.; Soni, A. Electronic structure of Gd based transition metal antimonides GdTSb (T = Ni, Pt). AIP Conf. Proc. 2018, 1953, 110010. [Google Scholar] [CrossRef]
- Baglasov, E.D.; Lukoyanov, A.V. Electronic structure of intermetallic antiferromagnet GdNiGe. Symmetry 2019, 11, 737. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xu, D.-D.; Ning, S.-Y.; Su, H.; Iitaka, T.; Tohyama, T.; Zhang, J.-X. Predicted Weyl fermions in magnetic GdBi and GdSb. Int. J. Mod. Phys. B 2017, 31, 1750217. [Google Scholar] [CrossRef]
- Wu, Y.; Lee, Y.; Kong, T.; Mou, D.; Jiang, R.; Huang, L.; Bud’ko, S.L.; Canfield, P.C.; Kaminski, A. Electronic structure of RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 2017, 96, 035134. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.D.; Wang, Y.J.; Xi, C.Y.; Zhen, W.L.; Yang, J.; Pi, L.; Zhu, W.K.; Zhang, C.J. Extreme magnetoresistance and Shubnikov-de Haas oscillations in ferromagnetic DySb. APL Mater. 2018, 6, 086105. [Google Scholar] [CrossRef]
- Xia, Z.-L.; Tang, F.; Xu, C.-Q.; Cong, S.; Zhao, W.; Zhang, L.; Han, Z.-D.; Qian, B.; Jiang, X.-F.; Ke, X.; et al. Influence of magnetization anisotropy on angular magnetoresistance in the antiferromagnetic topological semimetal HoSb. Phys. Rev. B 2022, 106, 115137. [Google Scholar] [CrossRef]
- Abdusalyamova, M.N.; Shokirov, H.S.; Rakhmatov, O.I. Investigation of the rare earth monoantimonides. J. Less Common Metals 1990, 166, 221–227. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. Quantum ESPRESSO: A modular and open-source software project for Quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [Green Version]
- Knyazev, Y.V.; Lukoyanov, A.V.; Kuz’min, Y.I.; Kuchin, A.G. Electronic structure and optical spectroscopy studies of HoNi5 and ErNi5 compounds doped with Cu. Phys. Status Solidi B 2012, 249, 824–828. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, J.P.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Quantum ESPRESSO. Available online: https://www.quantum-espresso.org/pseudopotentials (accessed on 7 December 2022).
- Topsakal, M.; Wentzcovitch, R. Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu). Comput. Mater. Sci. 2014, 95, 263–270. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baidak, S.T.; Lukoyanov, A.V. Common Topological Features in Band Structure of RNiSb and RSb Compounds for R = Tb, Dy, Ho. Materials 2023, 16, 242. https://doi.org/10.3390/ma16010242
Baidak ST, Lukoyanov AV. Common Topological Features in Band Structure of RNiSb and RSb Compounds for R = Tb, Dy, Ho. Materials. 2023; 16(1):242. https://doi.org/10.3390/ma16010242
Chicago/Turabian StyleBaidak, Semyon T., and Alexey V. Lukoyanov. 2023. "Common Topological Features in Band Structure of RNiSb and RSb Compounds for R = Tb, Dy, Ho" Materials 16, no. 1: 242. https://doi.org/10.3390/ma16010242
APA StyleBaidak, S. T., & Lukoyanov, A. V. (2023). Common Topological Features in Band Structure of RNiSb and RSb Compounds for R = Tb, Dy, Ho. Materials, 16(1), 242. https://doi.org/10.3390/ma16010242