Recovery of End-of-Life Tyres and Mineral Wool Waste: A Case Study with Gypsum Composite Materials Applying Circular Economy Criteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Binder
2.1.2. Recycled Crumbed Rubber
2.1.3. Fibres from Thermal Insulation Waste
2.1.4. Water
2.2. Sample Preparation
2.3. Experimental Programme
- To obtain the surface hardness and bulk density values, the recommendations of the UNE 102042: 2014 standard were followed [30]. These physical properties were determined in series of three standardised RILEM specimens of 40 mm × 40 mm × 160 mm, using a Shore C hardness tester and a digital laboratory scale with an accuracy of 0.01 g;
- The thermal conductivity coefficient of the gypsum composites produced was obtained by means of the “Thermal Box” test. For this purpose, a thermal box was used with replaceable walls made up of plates measuring 30 mm × 300 mm × 300 mm. In this test, an internal heat source is used to establish a stationary heat flow, which allows a temperature difference to be obtained between the inside and outside of the thermal box. Subsequently, with the help of thermocouples, it is possible to measure the thermal jump produced between the internal and external surface temperature of the gypsum composite, which allows the thermal conductivity coefficient of each material to be calculated;
- In order to study the effect of water absorption by capillary action on the gypsum composites designed for this research, the recommendations of the RILEM TC 25-PEM standard [31] were applied. The test was carried out using a series of three prismatic specimens of each material measuring 40 mm × 40 mm × 160 mm, immersed vertically in a container with water to a depth of 10 ± 1 mm. The duration of the test is 10 min and allows the height reached by the water in each compound to be determined, as well as the amount of water absorbed for each material designed;
- Finally, the water vapour permeability of the materials produced was determined according to the recommendations of the UNE-EN ISO 12572 standard [32]. For this purpose, circular specimens with a diameter of 100 ± 1 mm and a thickness of 10 ± 1 mm were placed in a watertight container containing 200 ml of a saturated solution of potassium nitrate. The samples were tested weekly for seven weeks, observing the loss of mass that occurs as a consequence of the evaporation of the salt solution through the plaster compound, which allows the determination of the water vapour permeability coefficient.
3. Results
3.1. Physical Characterisation Tests
3.2. Mechanical Characterisation Tests
3.3. Design and Characterisation of a Precast Block Prototype
4. Conclusions
- The gypsum composites developed show how it is possible to replace up to 300 g of the original raw materials with granulated rubber waste from ELT, which means a saving of more than 17.5% of the binder/water mixture;
- The incorporation of rubber aggregates in combination with recycled fibre mineral wool insulation reduces the density of hardened gypsum composites, in turn reducing the thermal conductivity of these materials by up to 30%. They are, therefore, presented as an alternative solution to improve the energy efficiency of buildings;
- On the other hand, the incorporation of these wastes decreases the water vapour permeability and the capillary height reached by water compared to traditional gypsum composites (G0.7). This suggests the technical feasibility of the possible application of these materials as prefabricated materials in wet rooms;
- Although there is a decrease in the mechanical properties as a consequence of the incorporation of the rubber aggregates and the decrease in the gypsum paste content, in all the cases analysed, the minimum values required by the current regulations for flexural strength (1 MPa) and compressive strength (2 MPa) are exceeded. In addition, the good adhesion of the recycled mineral wool fibres to the gypsum matrix is observed, which results in better flexural behaviour and reduces the risk of brittle fracture of these sustainable construction materials;
- Finally, the possibility of using these gypsum composites for the production of prefabricated blocks for wall lining and interior partition was studied. These prefabricated products obtain good results in compression for low densities and also make it possible to recover plastic waste from bottles and prefabricated plate waste from construction and demolition works.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thonipara, A.; Runst, P.; Ochsner, C.; Bizer, K. Energy efficiency of residential buildings in the European Union—An exploratory analysis of cross-country consumption patterns. Energy Policy 2019, 129, 1156–1167. [Google Scholar] [CrossRef] [Green Version]
- Gálvez-Martos, J.L.; Styles, D.; Schoenberger, H.; Zeschmar, B. Construction and demolition waste best management practice in Europe. Resour. Conserv. Recycl. 2018, 136, 166–178. [Google Scholar] [CrossRef] [Green Version]
- Lozano, B.; Alli, J.C. Administración y Lesgilación Ambiental, 11th ed.; Editorial Dykinson: Madrid, Spain, 2020. [Google Scholar]
- Buckley, N.; Mills, G.; Reinhart, C.; Berzolla, Z.M. Using urban building energy modelling (UBEM) to support the new European Union’s Green Deal: Case study of Dublin Ireland. Energy Build. 2021, 247, 111115. [Google Scholar] [CrossRef]
- Guerra, B.C.; Shahi, S.; Mollaei, A.; Skaf, N.; Weber, O.; Leite, F.; Haas, C. Circular economy applications in the construction industry: A global scan of trends and opportunities. J. Clean. Prod. 2021, 324, 129125. [Google Scholar] [CrossRef]
- del Río, M.; Vidales, A.; Piña, C.; Vitiello, V.; Santa Cruz, J.; Castelluccio, R. A review of the research about gypsum mortars with waste aggregates. J. Build. Eng. 2022, 45, 103338. [Google Scholar] [CrossRef]
- Gárate-Rojas, I. Artes de los Yesos. Yeserias e Estucos Munilla-Lería; Instituto Español de Arquitectura, MRRP, Universidad de Alcalá: Madrid, Spain, 1999. [Google Scholar]
- Del Río, M. Estado del arte sobre el comportamiento físico-mecánico de la escayola reforzada con fibras de vidrio E. Inf. Constr. 2004, 56, 33–48. [Google Scholar]
- Romero-Gómez, M.I.; Silva, R.V.; Flores-Colen, I.; de Brito, J. Influence of polypropylene residues on the physico-mechanical and water-resistance properties of gypsum plasters. J. Clean. Prod. 2022, 371, 133674. [Google Scholar] [CrossRef]
- Landi, D.; Gigli, S.; Germani, M.; Marconi, M. Investigating the feasibility of a reuse scenario for textile fibres recovered from end-of-life tyres. Waste Manag. 2018, 75, 187–204. [Google Scholar] [CrossRef]
- Torreta, V.; Rada, E.C.; Ragazzi, M.; Trulli, E.; Istrate, I.A.; Cioca, L.I. Treatment and disposal of tyres: Two EU approaches. A review. Waste Manag. 2015, 45, 152–160. [Google Scholar] [CrossRef]
- Abbaspour, M.; Aflaki, E.; Moghadas, F. Reuse of waste tire textile fibers as soil reinforcement. J. Clean. Prod. 2019, 207, 1059–1071. [Google Scholar] [CrossRef]
- Herrero, S.; Mayor, P.; Hernández-Olivares, F. Influence of proportion and particle size gradation of rubber from end-of-life tires on mechanical, thermal and acoustic properties of plaster–rubber mortars. Mater. Des. 2013, 47, 633–642. [Google Scholar] [CrossRef]
- Serna, A.; del Río, M.; Palomo, J.G.; Gónzalez, M. Improvement of gypsum plaster strain capacity by the addition of rubber particles from recycled tyres. Constr. Build. Mater. 2012, 35, 633–641. [Google Scholar] [CrossRef]
- Zaldívar, O.L.; Lozano, R.; Herrero, S.; Mayor, P.; Hernández-Olivares, F. Effects of water absorption on the microstructure of plaster with end-of-life tire rubber mortars. Constr. Build. Mater. 2017, 150, 558–567. [Google Scholar] [CrossRef]
- Vicente, R.; López, O.; Herrero, S.; Mayor, P.; Hernández, F. Mechanical Behavior of Plaster Composites Based on Rubber Particles from End-of-Life Tires Reinforced with Carbon Fibers. Materials 2021, 14, 3979. [Google Scholar] [CrossRef]
- Parres, F.; Crespo-Amorós, J.E.; Nadal, A. Mechanical properties analysis of plaster reinforced with fiber and microfiber obtained from shredded tires. Constr. Build. Mater. 2009, 23, 3182–3188. [Google Scholar] [CrossRef]
- Vidales Barriguete, A. Caracterización Fisicoquímica y Aplicaciones de yeso con Adición de Residuo Plástico de Cables Mediante Criterios de Economía Circular. Ph.D. Thesis, E.T.S. de Edificación (UPM), Madrid, Spain, 2019. [Google Scholar] [CrossRef]
- Villoria, P.; Osamni, M. A diagnosis of construction and demolition waste generation and recovery practice in the European Union. J. Clean. Prod. 2019, 241, 118400. [Google Scholar] [CrossRef]
- Piña Ramírez, C. Comportamiento Físico-Mecánico y Térmico de los Morteros de Cemento Aditivados con Fibras Minerales Procedentes de Residuos de Construcción y Demolición. Ph.D. Thesis, E.T.S. de Edificación (UPM), Madrid, Spain, 2018. [Google Scholar] [CrossRef]
- Piña, C.; del Río, M.; Viñas, C.; Vidales, A.; Kosior-Kazberuk, M. Analysis of the mechanical behaviour of the cement mortars with additives of mineral wool fibres from recycling of CDW. Constr. Build. Mater. 2019, 210, 56–62. [Google Scholar] [CrossRef]
- Romaniega, S.; del Rio, M.; Pérez, C. New Plaster Composite with Mineral Wool Fibres from CDW Recycling. Adv. Mater. Sci. Eng. 2015, 268, 854192. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Liñán, C.; Morales, J.M.; Rubio, P.; Pérez-Gálvez, F.; Pedreño-Rojas, M. The Influence of Natural and Synthetic Fibre Reinforcement on Wood-Gypsum Composites. Open Constr. Build. Technol. J. 2017, 11, 350–362. [Google Scholar] [CrossRef]
- Del Río, M. Aplicaciones del yeso y la escayola en la edificación. Inf. Constr. 2004, 56, 53–60. [Google Scholar]
- UNE-EN 13279-1:2009; Gypsum Binders and Gypsum Plasters—Part 1: Definitions and Requirements. AENOR: Madrid, Spain, 2009.
- Valentini, F.; Pegoretti, A. End-of-life options of tyres. A review. Adv. Ind. Eng. Polym. Res. 2022, 5, 203–213. [Google Scholar] [CrossRef]
- Afum, E.; Agyabeng-Mensah, Y.; Baah, C.; Agyapong, G.K.Q.; Lascano, J.A.; Farooque, O.A. Prioritizing zero-waste performance and green differentiation advantage through the Prism of circular principles adoption: A mediated approach. J. Clean. Prod. 2022, 361, 132182. [Google Scholar] [CrossRef]
- Álvarez, M.; Ferrández, D.; Morón, C.; Atanes-Sánchez, E. Characterization of a New Lightened Gypsum-Based Material Reinforced with Fibers. Materials 2021, 14, 1203. [Google Scholar] [CrossRef] [PubMed]
- UNE-EN 13279-2:2014; Gypsum Binders and Gypsum Plasters—Part 2: Test Methods. AENOR: Madrid, Spain, 2014.
- UNE 102042: 2014; Gypsum Plasters. Other Test Methods. AENOR: Madrid, Spain, 2014.
- RILEM TC 25-PEM; Preservation of Natural Stone Monuments. RILEM Publications SARL: Paris, France, 1980.
- UNE-EN ISO 12572:2018; Hygrothermal Performance of Building Materials and Products—Determination of Water Vapour Transmission Properties. AENOR: Madrid, Spain, 2018.
- Herrero del Cura, S. Influencia de la Dosificación y Granulometría del Caucho de Neumáticos Fuera de Uso (NFU) y de las Dimensiones Físicas en las Propiedades Térmicas, Acústicas y Mecánicas de Placas de Mortero de Yeso-Caucho. Ph.D. Thesis, E.T.S. de Edificación (UPM), Madrid, Spain, 2016. [Google Scholar] [CrossRef]
- Roy, M.; Mohapatra, B. Improving Energy Efficiency in Buildings Through Responsible Design: Optimizing Use and Careful Selection of Building Materials. Encycl. Renew. Sustain. Mater. 2020, 4, 110–120. [Google Scholar] [CrossRef]
- Ferdous, W.; Manalo, A.; Siddique, R.; Mendis, P.; Zhuge, Y.; Wong, H.S.; Lokige, W.; Aravinthan, T.; Schubel, P. Recycling of landfill wastes (tyres, plastics and glass) in construction—A review on global waste generation, performance, application and future opportunities. Resour. Conserv. Recycl. 2021, 173, 105745. [Google Scholar] [CrossRef]
- Cherki, A.; Remy, B.; Khabbazi, A.; Jannot, Y.; Baillis, D. Experimental thermal properties characterization of insulating cork–gypsum composite. Constr. Build. Mater. 2014, 54, 202–209. [Google Scholar] [CrossRef]
- Vidales, A.; del Río Merino, M.; Atanes-Sánchez, E.; Piña, C. Analysis of the feasibility of the used of CDW as a low-environmental-impact aggregate in conglomerates. Constr. Build. Mater. 2018, 178, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Villoria Saez, P.; Santa Cruz Astorqui, J.; del Río Merino, M. Conglomerados sostenibles realizados con residuos de construcción generados en obras de rehabilitación energética. In Proceedings of the VII Elagec, Bogotá, Colombia, 15–18 November 2016; Universidad de los Andes: Cundinamarca, Colombia, 2016. [Google Scholar]
- Pedreño-Rojas, M.A.; Rodríguez-Linán, C.; Flores-Colen, I.; de Brito, J. Use of polycarbonate waste as aggregate in recycled gypsum plasters. Materials 2020, 13, 3042. [Google Scholar] [CrossRef]
- Vidales, A.; Atanes-Sánchez, E.; del Río, M.; Piña, C. Analysis of the improved water-resistant properties of plaster compounds with the addition of plastic waste. Constr. Build. Mater. 2020, 230, 116956. [Google Scholar] [CrossRef]
- Iucolano, F.; Boccarusso, L.; Langella, A. Hemp as eco-friendly substitute of glass fibres for gypsum reinforcement: Impact and flexural behaviour. Compos. Part B Eng. 2019, 175, 107073. [Google Scholar] [CrossRef]
- Jia, R.; Wang, Q.; Feng, P. A comprehensive overview of fibre-reinforced gypsum-based composites (FRGCs) in the construction field. Compos. Part B Eng. 2021, 205, 108540. [Google Scholar] [CrossRef]
- Del Río, M.; Villoria, P.; Longobardi, I.; Santa-Cruz, J.; Porras, C. Redesigning lightweight gypsum with mixes of polystyrene waste from construction and demolition waste. J. Clean. Prod. 2019, 220, 144–151. [Google Scholar] [CrossRef]
- San-Antonio, A.; del Río, M.; Viñas, C.; Villoria, P. Lightweight material made with gypsum and extruded polystyrene waste with enhanced thermal behaviour. Constr. Build. Mater. 2015, 93, 57–63. [Google Scholar] [CrossRef]
- Villoria, P.; del Rio, M.; Sorrentino, M.; Porras, C.; Santa Cruz, J.; Viñas, C. Mechanical Characterization of Gypsum Composites Containing Inert and Insulation Materials from Construction and Demolition Waste and Further Application as A Gypsum Block. Materials 2020, 13, 193. [Google Scholar] [CrossRef]
Fire Resistance | pH | Particle Size | Water Vapour Diffusion Factor | Workability Time | Purity Rate |
---|---|---|---|---|---|
Euroclass A1 | >6 | 0–0.4 mm | μ = 6 | 10–15 min | >80% |
Particle Size | Grain Morphology | Bulk Density | Humidity (by Weight) | Textile Material Content (by Weight) | Ferromagnetic Materials Content (by Weight) |
---|---|---|---|---|---|
2.5–4.0 mm | Angular | 550 kg/m3 | <0.75% | <0.50% | <0.10% |
Type | Fibre Width (μm) | (W/m·K) | Fire Resistance (Euroclass) | Water Vapour Diffusion Factor | Water Absorption (kg/m2) |
---|---|---|---|---|---|
Glass wool | 15–20 | 0.034 | A2-s1, d0 | <1 | <1 |
Rock wool | 8–9 | 0.035 | A1 |
Type | Gypsum (g) | Water (g) | Rubber Aggregate (g) | Mineral Wool (g) |
---|---|---|---|---|
G0.7 | 1000 | 700 | — | — |
G0.7–150 | 912 | 638 | 150 | — |
G0.7–300 | 824 | 576 | 300 | — |
G0.7–150–GW | 910 | 638 | 150 | 2 |
G0.7–300–GW | 822 | 576 | 300 | 2 |
G0.7–150–RW | 910 | 638 | 150 | 2 |
G0.7–300–RW | 822 | 576 | 300 | 2 |
Property | G0.7 | G0.7–150 | G0.7–300 | G0.7–150–GW | G0.7–300–GW | G0.7–150–RW | G0.7–300–RW |
---|---|---|---|---|---|---|---|
Surface Hardness (Ud. Shore C) | 75 | 66 | 61 | 64 | 59 | 68 | 62 |
Bulk Density (kg/m3) | 1108.95 | 946.33 | 864.61 | 935.16 | 849.22 | 957.58 | 852.73 |
Residues | ELT Rubber (0.6 mm) [13] | ELT Rubber (2.5 mm) [13] | Cork [36] | Cellular Glass [37] | Plastic Cables [38] | Polycarbonate [39] |
---|---|---|---|---|---|---|
λ (W/m·K) | 0.197 | 0.188 | 0.124 | 0.310 | 0.230 | 0.170 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaragoza-Benzal, A.; Ferrández, D.; Santos, P.; Morón, C. Recovery of End-of-Life Tyres and Mineral Wool Waste: A Case Study with Gypsum Composite Materials Applying Circular Economy Criteria. Materials 2023, 16, 243. https://doi.org/10.3390/ma16010243
Zaragoza-Benzal A, Ferrández D, Santos P, Morón C. Recovery of End-of-Life Tyres and Mineral Wool Waste: A Case Study with Gypsum Composite Materials Applying Circular Economy Criteria. Materials. 2023; 16(1):243. https://doi.org/10.3390/ma16010243
Chicago/Turabian StyleZaragoza-Benzal, Alicia, Daniel Ferrández, Paulo Santos, and Carlos Morón. 2023. "Recovery of End-of-Life Tyres and Mineral Wool Waste: A Case Study with Gypsum Composite Materials Applying Circular Economy Criteria" Materials 16, no. 1: 243. https://doi.org/10.3390/ma16010243
APA StyleZaragoza-Benzal, A., Ferrández, D., Santos, P., & Morón, C. (2023). Recovery of End-of-Life Tyres and Mineral Wool Waste: A Case Study with Gypsum Composite Materials Applying Circular Economy Criteria. Materials, 16(1), 243. https://doi.org/10.3390/ma16010243