Study on Manufacturing via Slip Casting and Properties of Alumina-Titanium Composite Enhanced by Thialite Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used for Research
2.2. Sample Preparation Process
- Weigh the right amounts of powders, fluidizer and water;
- Combine and mix the weighed ingredients to obtain a homogenous suspension.
- Procedure of homogenization and deaeration
- Casting of the deaerated mixture was performed in a previously prepared cylindrical mold made of gypsum. The diameter of the mold was 20 mm and the height was 10 mm.
- Sample drying process
- Mechanical treatment
- Sintering of samples
2.3. Research Methods
3. Results and Discussion
4. Summary
- The suspension used to obtain composites exhibits a non-Newtonian character of flow, with clear thinning under the influence of increasing shear forces. The reason for the drop in suspension viscosity is the decreasing internal resistance under increasing stress, due to the parallel arrangement of fluid components in relation to the direction of the flow.
- The TG curve revealed a two-stage change in the mass of the tested sample. In the first stage, up to a temperature of approx. 600 °C, a weight loss of 0.43% is noted, which is associated with the decomposition of organic additives and water. In the second step, a significant (9.03%) increase in mass is visible in the temperature range of 600–1250 °C. The increase in mass presumably results from the transformations of Ti and TiO2, resulting from their oxidation, as well as from the formation of compounds that include Al2O3, TiO2 and Al2TiO5.
- The sintered composites are characterized by the lack of surface defects such as cracks, microcracks and delamination. The relative density of the fabricated composites was equal to 99%.
- The sintering process resulted in the formation of two new phases: TiO2 and Al2TiO5 (thialite).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Souza, J.V.C.; Nono, M.d.C.d.A.; Mineiro, S.L.; Silva, O.M.d.M.; Ribeiro, M.V. Properties advanced of the silicon nitride based ceramics and recent performance on automotive parts manufacture by machining process: Advanced Ceramics, demand Forecast. SAE Tech. Pap. 2008, 2008-36-0330, 1–15. [Google Scholar] [CrossRef]
- Bocanegra-Bernal, M.H.; Matovic, B. Mechanical Properties of Silicon Nitride-Based Ceramics and Its Use in Structural Applications at High Temperatures. Mat. Sci. Eng. A Struct. 2010, 527, 1314–1338. [Google Scholar] [CrossRef]
- Boyle, R.J.; Parikh, A.H.; Nagpal, V.K. Design Considerations for Ceramic Matrix Composite High Pressure Turbine Blades. In Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 6: Ceramics; Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy, Phoenix, AZ, USA, 17–21 June 2019. V006T02A014. ASME. [Google Scholar] [CrossRef]
- Bocanegra-Bernal, M.H.; Domínguez-Ríos, C.; Garcia-Reyes, A.; Aguilar-Elguezabal, A.; Echeberria, J.; Nevarez-Rascon, A. Fracture toughness of an α-Al2O3 ceramic for joint prostheses under sinter and sinter-HIP conditions. Int. J. Refract. Met. Hard Mater. 2009, 27, 722–728. [Google Scholar] [CrossRef]
- Alweendo, S.T.; Johnson, O.T.; Shongwe, B.M.; Kavishe, F.P.; Borode, J.O. Microstructural and Mechanical Properties of Alumina (Al2O3) Matrix Composites Reinforced with SiC from Rice Husk by Spark Plasma Sintering. Mater. Res. 2020, 23, 1–9. [Google Scholar] [CrossRef]
- Fahrenholtz, W.; Ellerby, D.T.; Loehman, R.E. Al2O3—Ni Composites with High Strength and Fracture Toughness. J. Am. Ceram. Soc. 2000, 83, 1279–1280. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X. Bio-inspired, Graphene/ Al2O3 Doubly Reinforced Aluminum Composites with High Strength and Toughness. Nano Lett. 2017, 17, 6907–6915. [Google Scholar] [CrossRef]
- Popov, A.Y.; Sivak, A.A.; Borodianska, H.Y.; Shabalin, I.L. High toughness TiB2-Al2O3 composite ceramics produced by reactive hot pressing with fusible components. Adv. Appl. Ceram. 2015, 114, 178–182. [Google Scholar] [CrossRef]
- Konopka, K.; Maj, M.; Kurzydłowski, K.J. Studies of the Effect of Metal Particles on the Fracture Toughness of Ceramic Matrix Composites. Mater. Charact. 2003, 51, 335–340. [Google Scholar] [CrossRef]
- Prathumwan, R.; Subannajui, K. Fabrication of a ceramic/metal (Al2O3/Al) composite by 3D printing as an advanced refractory with enhanced electrical conductivity. RSC Adv. 2020, 10, 32301–32308. [Google Scholar] [CrossRef]
- Pietrzak, K.; Jach, K.; Kalinski, D.; Chmielewski, M.; Morgiel, J. Processing and microstructure of Al2O3-Cu composite material interpenetrating network type. In Proceedings of the Euro International Powder Metallurgy Congress and Exhibition, Euro PM, Barcelona, Spain, 9–12 October 2011. [Google Scholar]
- Meir, S.; Kalabukhov, S.; Frage, N.; Hayun, S. Mechanical Properties of Al2O3\Ti Composites Fabricated by Spark Plasma Sintering. Ceram. Int. 2015, 41, 4637–4643. [Google Scholar] [CrossRef]
- Horvitz, D.; Gotman, I.; Gutmanas, E.; Claussen, N. In Situ Processing of Dense Al2O3-Ti Aluminide Interpenetrating Phase Composites. J. Eur. Ceram. Soc. 2002, 22, 947–954. [Google Scholar] [CrossRef]
- Manes, A.; Giglio, M. Microstructural numerical modeling of Al2O3/Ti composite. Procedia Struct. Integr. 2018, 8, 24–32. [Google Scholar] [CrossRef]
- Shi, S.; Sekino, T.; Cho, S.; Goto, T. Ti and TiC co-toughened Al2O3 composites by in-situ synthesis from reaction of Ti and MWCNT. Mat. Sci. Eng. A Struct. 2020, 777, 139066. [Google Scholar] [CrossRef]
- Wachowski, M.; Zygmuntowicz, J.; Kosturek, R.; Konopka, K.; Kaszuwara, W. Manufacturing of Al2O3/Ni/Ti Composites Enhanced by Intermetallic Phases. Materials 2021, 14, 3510. [Google Scholar] [CrossRef]
- Hutsaylyuk, V.; Student, M.; Posuvailo, V.; Student, O.; Sirak, Y.; Hvozdets’kyi, V.; Maruschak, P.; Veselivska, H. The properties of oxide-ceramic layers with Cu and Ni inclusions synthesizing by PEO method on top of the gas-spraying coatings on aluminium alloys. Vacuum 2020, 179, 109514. [Google Scholar] [CrossRef]
- Konopka, K.; Oziȩbło, A. Microstructure and the fracture toughness of the Al2O3-Fe composites. Mater. Charact. 2001, 46, 125–129. [Google Scholar] [CrossRef]
- Edalati, K.; Iwaoka, H.; Horita, Z.; Konno, M.; Sato, T. Unusual Hardening in Ti/Al2O3 Nanocomposites Produced by High-Pressure Torsion Followed by Annealing. Mat. Sci. Eng. A Struct. 2011, 529, 435–441. [Google Scholar] [CrossRef]
- Gutiérrez-González, C.F.; Fernandez-Garcia, E.; Fernández, A.; Torrecillas, R.; Lopez-Esteban, S. Processing, Spark Plasma Sintering, and Mechanical Behavior of Alumina/Titanium Composites. J. Mater. Sci. 2014, 49, 3823–3830. [Google Scholar] [CrossRef] [Green Version]
- Atiyah, A.A.; Farid, S.B.H.; Abdulamer, D.N. Fabrication of Ceramic-Metal Functionally Graded Materials. Eng. Technol. J. 2013, 31, 513–525. [Google Scholar]
- Dittert, B.; Wiessner, M.; Angerer, P.; Lackner, J.M.; Leichtfried, H. Tailored Al2O3-Al2TiO5-TiO2 Composite Ceramics from different Titanium Precursors. Arch. Metall. Mater. 2019, 64, 1277–1286. [Google Scholar] [CrossRef]
- Hutsaylyuk, V.; Student, M.; Zadorozhna, K.; Student, O.; Veselivska, H.; Gvosdetskii, V.; Maruschak, P.; Pokhmurska, H. Improvement of wear resistance of aluminum alloy by HVOF method. J. Mater. Res. Technol. 2020, 9, 16367–16377. [Google Scholar] [CrossRef]
- Kędzierska-Sar, A.; Falkowski, P.; Szafran, M. Stabilization of Heavy Metal Particles in Al2O3-W Suspensions. Arch. Metall. Mater. 2016, 61, 1465–1470. [Google Scholar] [CrossRef] [Green Version]
- Kędzierska-Sar, A.; Falkowski, P.; Smalc-Koziorowska, J.; Gierlotka, S.; Szafran, M. Al2O3-W nanocomposites obtained by colloidal processing and in situ synthesis of nano-metal particles. J. Eur. Ceram. Soc. 2021, 41, 3527–3534. [Google Scholar] [CrossRef]
- Zygmuntowicz, J.; Szymańska, J.; Wachowski, M.; Gloc, M.; Kaszuwara, W. New Al2O3-Cu-Ni functionally graded composites manufactured using the centrifugal slip casting. Int. J. Appl. Ceram. Technol. 2020, 17, 2580–2590. [Google Scholar] [CrossRef]
- Yang, Y.; Gong, Y.; Li, C.; Wen, X.; Sun, J. Mechanical performance of 316L stainless steel by hybrid directed energy deposition and thermal milling process. J. Mater. Process. Technol. 2020, 291, 117023. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, Y.; Li, C.; Wang, Y.; Chen, Y.; An, Q.; Zhang, S.; Li, H.N.; Cao, H.; Ali, H.M.; et al. Fiber-reinforced composites in milling and grinding: Machining bottlenecks and advanced strategies. Front. Mech. Eng. 2022, 17, 24. [Google Scholar] [CrossRef]
- Zygmuntowicz, J.; Miazga, A.; Wiecinska, P.; Kaszuwara, W.; Konopka, K.; Szafran, M. Combined centrifugal-slip casting method used for preparation the Al2O3-Ni functionally graded composites. Compos. Part B Eng. 2018, 141, 158–163. [Google Scholar] [CrossRef]
- Falkowski, P.; Żurowski, R. Shaping of alumina microbeads by drop-casting of the photopolymerizable suspension into silicone oil and UV curing. J. Eur. Ceram. Soc. 2022, 42, 3957–3967. [Google Scholar] [CrossRef]
- Żurowski, R.; Zygmuntowicz, J.; Tomaszewska, J.; Ulkowska, U.; Piotrkiewicz, P.; Wachowski, M.; Szachogłuchowicz, I.; Kukielski, M. Sustainable ZTA composites produced by an advanced centrifugal slip casting method. Ceram. Int. 2022, 48, 11678–11695. [Google Scholar] [CrossRef]
- Xiao, C.; Zhang, H.; Davoodi, D.; Miri, R.; Tayebi, M. Microstructure evolutions of Ti-Al-Nb alloys with different Ta addition, produced by mechanical alloying and spark plasma sintering. Mater. Lett. 2022, 323, 132568. [Google Scholar] [CrossRef]
- Guo, R.; Xiong, G.; Liu, J.; Wang, Y.; Davoodi, D.; Miri, R.; Tayebi, M. Tribological behavior of Ti-Al-Nb alloy with different Ta additions for high temperature applications. Mater. Lett. 2023, 330, 133324. [Google Scholar] [CrossRef]
- Żurowski, R.; Zygmuntowicz, J.; Piotrkiewicz, P.; Wachowski, M.; Szczypiński, M.M. ZTA Pipes with a Gradient Structure-Effect of the Rheological the Behavior of Ceramic Suspensions on the Gradient Structure and Characterized of the Obtained Products. Materials 2021, 14, 7348. [Google Scholar] [CrossRef] [PubMed]
- Nete, M.; Purcell, W.; Snyders, E.; Nel, J.T.; Beukes, G. Characterization and alternative dissolution of tantalite mineral samples from Mozambique. J. S. Afr. Inst. Min. Metall. 2012, 112, 1079–1086. [Google Scholar]
- Liu, Q.; Qiu, M.; Shen, L.; Jiao, C.; Ye, Y.; Xie, D.; Wang, C.; Xiao, M.; Zhao, J. Additive Manufacturing of Monolithic Microwave Dielectric Ceramic Filters via Digital Light Processing. Electronics 2019, 8, 1067. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.A.J.; Stevens, R. Aluminium titanate—A literature review. Brit. Ceram. Transact. 1989, 88, 144–190. [Google Scholar]
- Segadães, A.M.; Morelli, M.R.; Kiminami, R.G.A. Combustion synthesis of aluminium titanate. J. Eur. Ceram. Soc. 1998, 18, 771–781. [Google Scholar] [CrossRef]
Material | Company | Average Particle Size | Density | Purity |
---|---|---|---|---|
α- Al2O3 | Tamei Chemicals Co. | 0.100 ± 0.025 µm | 3.98 g/cm3 | 99.99% |
Ti | GoodFellow Cambridge Limited | 75 µm | 4.51 g/cm3 | 99.50% |
Material | Theoretical Density [g/cm3] (Declared by the Manufacturer) | Real Density [g/cm3] (Pycnometric Method) |
---|---|---|
α- Al2O3 | 3.98 | 3.997 ± 0.028 |
Ti | 4.51 | 4.538 ± 0.0162 |
Series | Viscosity at a Shear Rate of 0.1 s−1 (Pa∙s) | Viscosity at a Shear Rate of 1 s−1(Pa∙s) | Viscosity at a Shear Rate of 10 s−1 (Pa∙s) | Viscosity at a Shear Rate of 100 s−1 (Pa∙s) |
---|---|---|---|---|
Al2O3/Ti (10%) | 7.14 | 1.51 | 0.37 | 0.13 |
Area | Chemical Composition (%wt.) | |||||
---|---|---|---|---|---|---|
O | Al | Ti | ||||
%wt. | %at. | %wt. | %at. | %wt. | %at. | |
1 | 47.78 | 60.67 | 52.22 | 39.33 | - | - |
2 | - | - | 3.27 | 5.66 | 96.73 | 94.34 |
3 | 38.26 | 51.10 | 61.74 | 48.90 | - | - |
4 | - | - | 4.28 | 7.35 | 95.72 | 92.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wachowski, M.; Zygmuntowicz, J.; Kosturek, R.; Piotrkiewicz, P.; Żurowski, R.; Więcław-Midor, A.; Śnieżek, L. Study on Manufacturing via Slip Casting and Properties of Alumina-Titanium Composite Enhanced by Thialite Phase. Materials 2023, 16, 79. https://doi.org/10.3390/ma16010079
Wachowski M, Zygmuntowicz J, Kosturek R, Piotrkiewicz P, Żurowski R, Więcław-Midor A, Śnieżek L. Study on Manufacturing via Slip Casting and Properties of Alumina-Titanium Composite Enhanced by Thialite Phase. Materials. 2023; 16(1):79. https://doi.org/10.3390/ma16010079
Chicago/Turabian StyleWachowski, Marcin, Justyna Zygmuntowicz, Robert Kosturek, Paulina Piotrkiewicz, Radosław Żurowski, Anna Więcław-Midor, and Lucjan Śnieżek. 2023. "Study on Manufacturing via Slip Casting and Properties of Alumina-Titanium Composite Enhanced by Thialite Phase" Materials 16, no. 1: 79. https://doi.org/10.3390/ma16010079
APA StyleWachowski, M., Zygmuntowicz, J., Kosturek, R., Piotrkiewicz, P., Żurowski, R., Więcław-Midor, A., & Śnieżek, L. (2023). Study on Manufacturing via Slip Casting and Properties of Alumina-Titanium Composite Enhanced by Thialite Phase. Materials, 16(1), 79. https://doi.org/10.3390/ma16010079