Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sintering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Specimens
2.3. Powder Density Measurement
2.4. Hydrostatic Method
2.5. Phase Composition Analysis
2.6. Williamson–Hall Method
2.7. Microscopic Observations
2.8. Hardness Test
2.9. Fracture Toughness
2.10. Wear Resistance Test
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeomans, J.A. Ductile Particle Ceramic Matrix Composites—Scientific Curiosities or Engineering Materials? J. Eur. Ceram. Soc. 2008, 28, 1543–1550. [Google Scholar] [CrossRef]
- Moya, J.S.; Lopez-Esteban, S.; Pecharromán, C. The Challenge of Ceramic/Metal Microcomposites and Nanocomposites. Prog. Mater. Sci. 2007, 52, 1017–1090. [Google Scholar] [CrossRef]
- Sun, X.; Yeomans, J. Optimization of a Ductile-Particle-Toughened Ceramic. J. Am. Ceram. Soc. 1996, 79, 2705–2717. [Google Scholar] [CrossRef]
- Sawaguchi, A.; Toda, K.; Niihara, K. Mechanical and Electrical Properties of Silicon Nitride–Silicon Carbide Nanocomposite Material. J. Am. Ceram. Soc. 1991, 74, 1142–1144. [Google Scholar] [CrossRef]
- Rodriguez-Suarez, T.; Bartolomé, J.F.; Moya, J.S. Mechanical and Tribological Properties of Ceramic/Metal Composites: A Review of Phenomena Spanning from the Nanometer to the Micrometer Length Scale. J. Eur. Ceram. Soc. 2012, 32, 3887–3898. [Google Scholar] [CrossRef]
- Chou, S.-N.; Lu, H.-H.; Lii, D.-F.; Huang, J.-L. Processing and Physical Properties of Al2O3/Aluminum Alloy Composites. Ceram. Int. 2009, 35, 7–12. [Google Scholar] [CrossRef]
- Imbeni, V.; Hutchings, I.M.; Breslin, M.C. Abrasive Wear Behaviour of an Al2O3–Al Co-Continuous Composite. Wear 1999, 233–235, 462–467. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, Y.-S.; Hu, L.-T. High-Temperature Self-Lubricated Properties of Al2O3/Mo Laminated Composites. Wear 2012, 280–281, 1–4. [Google Scholar] [CrossRef]
- Liu, D.-M.; Tuan, W.H.; Chiu, C.-C. Thermal Diffusivity, Heat Capacity and Thermal Conductivity in Al2O3 Ni Composite. Mater. Sci. Eng. B 1995, 31, 287–291. [Google Scholar] [CrossRef]
- Liu, D.M.; Tuan, W.H. Microstructure and Thermal Conduction Properties of Al2O3-Ag Composites. Acta Mater. 1996, 44, 813–818. [Google Scholar] [CrossRef]
- Travitzky, N. Processing of Ceramic–Metal Composites. Adv. Appl. Ceram. 2012, 111, 286–300. [Google Scholar] [CrossRef]
- Chen, R.Z.; Tuan, W.H. Pressureless Sintering of Al2O3/Ni Nanocomposites. J. Eur. Ceram. Soc. 1999, 19, 463–468. [Google Scholar] [CrossRef]
- Rodriguez-Suarez, T.; Bartolomé, J.F.; Smirnov, A.; Lopez-Esteban, S.; Torrecillas, R.; Moya, J.S. Sliding Wear Behaviour of Alumina/Nickel Nanocomposites Processed by a Conventional Sintering Route. J. Eur. Ceram. Soc. 2011, 31, 1389–1395. [Google Scholar] [CrossRef]
- Zygmuntowicz, J.; Falkowski, P.; Miazga, A.; Konopka, K. Fabrication and Characterization of ZrO2/Ni Composites. J. Aust. Ceram. Soc. 2018, 54, 655–662. [Google Scholar] [CrossRef]
- Zygmuntowicz, J.; Falkowski, P.; Miazga, A.; Konopka, K. ZrO2-Ni composites-properties and characterization. Compos. Theory Pract. 2016, 16, 249–254. [Google Scholar]
- Łada, P.; Bartnik, M.; Miazga, A.; Konopka, K. The Size and Shape Analysis of Titanium Particles in Composites from ZrO2–Ti System. Appl. Mech. Mater. 2015, 797, 400–407. [Google Scholar] [CrossRef]
- Lada, P.; Miazga, A.; Wozniak, J.; Konopka, K.; Olszyna, A. The Formation of ZrO2–Ti Composites by Spark Plasma Sintering. Powder Metall. Met. Ceram. 2017, 55, 644–649. [Google Scholar] [CrossRef]
- Konopka, K.; Łada, P.; Dutkiewicz, J.; Miazga, A.; Maziarz, W. SEM and TEM Analysis of Composite of ZrO2-Ti System. Compos. Interfaces 2018, 25, 1091–1099. [Google Scholar] [CrossRef]
- Lada, P.; Miazga, A.; Bazarnik, P.; Konopka, K. Microstructure Characterization of Composite from ZrO2–Ti System. Arch. Metall. Mater. 2017, 62, 2045–2049. [Google Scholar] [CrossRef]
- Ashby, M.F.; Bréchet, Y.J.M. Designing Hybrid Materials. Acta Mater. 2003, 51, 5801–5821. [Google Scholar] [CrossRef]
- Konopka, K. Particle-Reinforced Ceramic Matrix Composites—Selected Examples. J. Compos. Sci. 2022, 6, 178. [Google Scholar] [CrossRef]
- Obadele, B.A.; Lepule, M.L.; Andrews, A.; Olubambi, P.A. Tribocorrosion Characteristics of Laser Deposited Ti–Ni–ZrO2 Composite Coatings on AISI 316 Stainless Steel. Tribol. Int. 2014, 78, 160–167. [Google Scholar] [CrossRef]
- Mori, M.; Hiei, Y.; Itoh, H.; Tompsett, G.A.; Sammes, N.M. Evaluation of Ni and Ti-Doped Y2O3 Stabilized ZrO2 Cermet as an Anode in High-Temperature Solid Oxide Fuel Cells. Solid State Ion. 2003, 160, 1–14. [Google Scholar] [CrossRef]
- Chakravarty, D.; Sundararajan, G. Microstructure, Mechanical Properties and Machining Performance of Spark Plasma Sintered Al2O3–ZrO2–TiCN Nanocomposites. J. Eur. Ceram. Soc. 2013, 33, 2597–2607. [Google Scholar] [CrossRef]
- Kunz, C.; Bartolomé, J.F.; Gnecco, E.; Müller, F.A.; Gräf, S. Selective Generation of Laser-Induced Periodic Surface Structures on Al2O3-ZrO2-Nb Composites. Appl. Surf. Sci. 2018, 434, 582–587. [Google Scholar] [CrossRef]
- Verma, V.; Manoj Kumar, B.V. Synthesis, Microstructure and Mechanical Properties of Al2O3/ZrO2/CeO2 Composites with Addition of Nickel and Titania Processed by Conventional Sintering. Mater. Today Proc. 2017, 4, 3062–3071. [Google Scholar] [CrossRef]
- Zhang, B.; Boey, F. The Phases and the Toughening Mechanisms in (Y)ZrO2–Al2O3–(Ti, W)C Ceramics System. Mater. Lett. 2000, 43, 197–202. [Google Scholar] [CrossRef]
- Tuan, W.-H.; Pai, Y.-P. Mechanical Properties of Al2O3-NiAl Composites. J. Am. Ceram. Soc. 1999, 82, 1624–1626. [Google Scholar] [CrossRef]
- Miracle, D.B.; Mendiratta, M.G. Intermetallic Composites in Intermetallic Compounds; Wiley: Chichester, UK, 1994; p. 287. [Google Scholar]
- Fahrenholtz, W.G. Reactive Processing in Ceramic-Based Systems. Int. J. Appl. Ceram. Technol. 2006, 3, 1–12. [Google Scholar] [CrossRef]
- Tjong, S.C.; Ma, Z.Y. Microstructural and Mechanical Characteristics of in Situ Metal Matrix Composites. Mater. Sci. Eng. R. Rep. 2000, 29, 49–113. [Google Scholar] [CrossRef]
- Zarezadeh Mehrizi, M.; Sedigh Mofrad, S. Synthesis of NiAl/TiC–Al2O3 Composite by Mechanically Activated Combustion Synthesis. Ceram. Int. 2021, 47, 9258–9263. [Google Scholar] [CrossRef]
- Feng, T.; Zheng, W.; Chen, W.; Shi, Y.; Fu, Y.Q. Enhanced Interfacial Wettability and Mechanical Properties of Ni@Al2O3/Cu Ceramic Matrix Composites Using Spark Plasma Sintering of Ni Coated Al2O3 Powders. Vacuum 2021, 184, 109938. [Google Scholar] [CrossRef]
- Kosyanov, D.Y.; Vornovskikh, A.A.; Shichalin, O.O.; Papynov, E.K.; Belov, A.A.; Kosianova, A.A.; Fedorets, A.N.; Leonov, A.A.; Zavjalov, A.P.; Tikhonov, S.A.; et al. Reactive SPS of Al2O3–RE:YAG (RE = Ce; Ce + Gd) Composite Ceramic Phosphors. J. Adv. Ceram. 2023, 12, 1015–1032. [Google Scholar] [CrossRef]
- Michalski, A.; Jaroszewicz, J.; Rosiński, M.; Siemiaszko, D. NiAl–Al2O3 Composites Produced by Pulse Plasma Sintering with the Participation of the SHS Reaction. Intermetallics 2006, 14, 603–606. [Google Scholar] [CrossRef]
- Konopka, K.; Krasnowski, M.; Zygmuntowicz, J.; Cymerman, K.; Wachowski, M.; Piotrkiewicz, P. Characterization of Al2O3 Samples and NiAl–Al2O3 Composite Consolidated by Pulse Plasma Sintering. Materials 2021, 14, 3398. [Google Scholar] [CrossRef]
- Cymerman, K.; Oleszak, D.; Rosinski, M.; Michalski, A. Structure and Mechanical Properties of TiB2/TiC–Ni Composites Fabricated by Pulse Plasma Sintering Method. Adv. Powder Technol. 2018, 29, 1795–1803. [Google Scholar] [CrossRef]
- Shichalin, O.O.; Papynov, E.K.; Buravlev, I.Y.; Buravleva, A.A.; Chuklinov, S.V.; Gridasova, E.A.; Pogodaev, A.V.; Nepomnyushchaya, V.A.; Kornakova, Z.E.; Lembikov, A.O.; et al. Functionally Gradient Material Fabrication Based on Cr, Ti, Fe, Ni, Co, Cu Metal Layers via Spark Plasma Sintering. Coatings 2023, 13, 138. [Google Scholar] [CrossRef]
- Zygmuntowicz, J.; Falkowski, P.; Wachowski, M.; Cymerman, K.; Piotrkiewicz, P.; Kaszuwara, W. Effect of the Sintering Temperature on Microstructure and Properties of Al2O3–Cu–Ni Hybrid Composites Obtained by PPS. Int. J. Appl. Ceram. Technol. 2020, 17, 1731–1741. [Google Scholar] [CrossRef]
- Olevsky, E.A.; Bordia, R. Advances in Sintering Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 978-0-470-59970-9. [Google Scholar]
- Klimczyk, P.; Wyżga, P.; Cyboroń, J.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Cygan, S.; Jaworska, L. Phase Stability and Mechanical Properties of Al2O3-CBN Composites Prepared via Spark Plasma Sintering. Diam. Relat. Mater. 2020, 104, 107762. [Google Scholar] [CrossRef]
- Guillon, O.; Gonzalez-Julian, J.; Dargatz, B.; Kessel, T.; Schierning, G.; Räthel, J.; Herrmann, M. Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments. Adv. Eng. Mater. 2014, 16, 830–849. [Google Scholar] [CrossRef]
- Konopka, K.; Zygmuntowicz, J.; Krasnowski, M.; Cymerman, K.; Wachowski, M.; Piotrkiewicz, P. Pulse Plasma Sintering of NiAl-Al2O3 Composite Powder Produced by Mechanical Alloying with Contribution of Nanometric Al2O3 Powder. Materials 2022, 15, 407. [Google Scholar] [CrossRef] [PubMed]
- Zygmuntowicz, J.; Konopka, K.; Krasnowski, M.; Piotrkiewicz, P.; Bolek, J.; Wachowski, M.; Żurowski, R.; Szafran, M. Characterization of Al2O3 Matrix Composites Fabricated via the Slip Casting Method Using NiAl-Al2O3 Composite Powder. Materials 2022, 15, 2920. [Google Scholar] [CrossRef] [PubMed]
- Michalski, A.; Rosiński, M. Pulse Plasma Sintering and Applications. In Advances in Sintering Science and Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; pp. 219–226. [Google Scholar] [CrossRef]
- Rosinski, M.; Fortuna, E.; Michalski, A.; Pakiela, Z.; Kurzydlowski, K.J. W/Cu Composites Produced by Pulse Plasma Sintering Technique (PPS). Fusion. Eng. Des. 2007, 82, 2621–2626. [Google Scholar] [CrossRef]
- Michalski, A.; Jaroszewicz, J.; Rosinski, M. The Synthesis of NiAl Using the Pulse Plasma Method with the Participation of the SHS Reaction. Int. J. Self. Propagating High. Temp. Synth. 2003, 12, 237–246. [Google Scholar]
- ASTM D3766-08(2018); Standard Terminology Relating to Catalysts and Catalysis. ASTM International: West Conshohocken, PA, USA, 2018.
- EN 623–2:1993; Advanced Technical Ceramics–Determination of Density and Porosity. European Standard: Brussels, Belgium, 1993.
- Suryanarayana, C.; Norton, M.G. Practical Aspects of X-ray Diffraction. In X-ray Diffraction: A Practical Approach; Suryanarayana, C., Norton, M.G., Eds.; Springer: Boston, MA, USA, 1998; pp. 63–94. [Google Scholar] [CrossRef]
- Mote, V.; Purushotham, Y.; Dole, B. Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles. J. Theor. Appl. Phys. 2012, 6, 6. [Google Scholar] [CrossRef]
- Kisan, B.; Bhuyan, R.K.; Mohapatra, R.K. Nanocrystalline NiO Powder: Synthesis, Characterization and Emerging Applications. In Nano-Biosorbents for Decontamination of Water, Air, and Soil Pollution; Denizli, A., Ali, N., Bilal, M., Khan, A., Nguyen, T.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 529–550. [Google Scholar] [CrossRef]
- Lankford, J. Indentation Microfracture in the Palmqvist Crack Regime: Implications for Fracture Toughness Evaluation by the Indentation Method. J. Mater. Sci. Lett. 1982, 1, 493–495. [Google Scholar] [CrossRef]
- Shackelford, J.F.; Han, Y.-H.; Kim, S.; Kwon, S.-H. CRC Materials Science and Engineering Handbook; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4987-6560-2. [Google Scholar]
- Faraoun, H.; Aourag, H.; Esling, C.; Seichepine, J.L.; Coddet, C. Elastic Properties of Binary NiAl, NiCr and AlCr and Ternary Ni2AlCr Alloys from Molecular Dynamic and Abinitio Simulation. Comput. Mater. Sci. 2005, 33, 184–191. [Google Scholar] [CrossRef]
- Krasnowski, M.; Gierlotka, S.; Ciołek, S.; Kulik, T. Nanocrystalline NiAl Intermetallic Alloy with High Hardness Produced by Mechanical Alloying and Hot-Pressing Consolidation. Adv. Powder Technol. 2019, 30, 1312–1318. [Google Scholar] [CrossRef]
- Krasnowski, M.; Gierlotka, S.; Kulik, T. NiAl-B Composites with Nanocrystalline Intermetallic Matrix Produced by Mechanical Alloying and Consolidation. Adv. Powder Technol. 2019, 30, 2742–2750. [Google Scholar] [CrossRef]
- Krasnowski, M. Phase Transformations during Mechanical Alloying and Subsequent Heating of FeAlB Powders. J. Alloy. Compd. 2017, 706, 110–115. [Google Scholar] [CrossRef]
- Shao, W.; Guevara-Vela, J.M.; Fernández-Caballero, A.; Liu, S.; LLorca, J. Accurate Prediction of the Solid-State Region of the Ni-Al Phase Diagram Including Configurational and Vibrational Entropy and Magnetic Effects. Acta Mater. 2023, 253, 118962. [Google Scholar] [CrossRef]
- Yuan, Y.; Fan, J.; Li, J.; Liu, J.; Zhao, K.; Liu, D.; An, L. Oscillatory Pressure Sintering of Al2O3 Ceramics. Ceram. Int. 2020, 46, 15670–15673. [Google Scholar] [CrossRef]
- Sun, Z.; Li, B.; Hu, P.; Ding, F.; Yuan, F. Alumina Ceramics with Uniform Grains Prepared from Al2O3 Nanospheres. J. Alloys Compd. 2016, 688, 933–938. [Google Scholar] [CrossRef]
- Ouyang, Y.; Bai, L.; Sun, Z.; Ding, F.; Yuan, F. A New Strategy for Dense Al2O3 Ceramics by Spherical Powders Prepared via Thermal Plasma. Ceram. Int. 2019, 45, 2012–2019. [Google Scholar] [CrossRef]
- Žmak, I.; Ćorić, D.; Mandić, V.; Ćurković, L. Hardness and Indentation Fracture Toughness of Slip Cast Alumina and Alumina-Zirconia Ceramics. Materials 2020, 13, 122. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Antonov, M.; Klimczyk, P.; Mikli, V.; Gomon, D. Effect of CBN Content and Additives on Sliding and Surface Fatigue Wear of Spark Plasma Sintered Al2O3-CBN Composites. Wear 2022, 494–495, 204250. [Google Scholar] [CrossRef]
PPS Process Parameter | Stored Energy | Electro-Pulse Repetition | Voltage | Sintering Temperature | Heating Rate | Sintering Time | Load |
---|---|---|---|---|---|---|---|
[kJ] | [s] | [kV] | [°C] | [°C/min] | [s] | [MPa] | |
Composite | 2.77 | 1.3 | 4.3 | 1200, 1300, 1400 | 250 | 180 | 25–80 |
Series | Type of Compo-Powder | Sintering Temperature | Content of Compo-Powder | Content of Al2O3 |
---|---|---|---|---|
Series I | NiAl + 20 wt.% Al2O3 | 1200 °C | 2.5 wt.% with respect to the amount of ceramic | 97.5 wt.% |
Series II | 1300 °C | |||
Series III | 1400 °C | |||
Series IV | 1200 °C | 5 wt.% with respect to the amount of ceramic | 95 wt.% | |
Series V | 1300 °C | |||
Series VI | 1400 °C |
Measurement area is shown in Figure 7 | Chemical Composition | |||||
O | Al | Ni | ||||
Weight% | Atomic % | Weight% | Atomic % | Weight% | Atomic % | |
13.50 ± 0.12 | 27.73 ± 0.21 | 36.26 ± 0.17 | 44.15 ± 0.12 | 50.24 ±0.21 | 28.12 ± 0.09 |
Samples | Relative Density | Open Porosity | Soaking |
---|---|---|---|
[%] | [%] | [%] | |
Series I—Al2O3 + 2.5 vol.% of compo-powder (NiAl + 20 wt.% Al2O3) sintered at temperature 1200 °C | 92.24 ± 0.03 | 3.88 ± 0.11 | 1.04 ± 0.09 |
Series II—Al2O3+ 2.5 vol.% of compo-powder (NiAl + 20 wt.% Al2O3) sintered at temperature 1300 °C | 99.80 ± 0.04 | 0.03 ± 0.01 | <0.01 |
Series III—Al2O3+ 2.5 vol.% of compo-powder (NiAl + 20 wt.% Al2O3) sintered at temperature 1400 °C | 99.85 ± 0.02 | 0.02 ± 0.01 | <0.01 |
Series IV—Al2O3+ 5 vol.% of compo-powder (NiAl + 20 wt.% Al2O3) sintered at temperature 1200 °C | 93.03 ± 0.02 | 3.79 ± 0.24 | 1.00 ± 0.08 |
Series V—Al2O3+ 5 vol.% of compo-powder (NiAl + 20 wt.% Al2O3) sintered at temperature 1300 °C | 99.78 ± 0.04 | 0.03 ± 0.01 | <0.01 |
Series VI—Al2O3+ 5 vol.% of compo-powder (NiAl + 20 wt.% Al2O3) sintered at temperature 1400 °C | 99.85 ± 0.01 | 0.02± 0.01 | <0.01 |
Samples | Composition | Sintering Temperature(°C) | KIC(MPa·m0.5) |
---|---|---|---|
Series I | Al2O3 + 2.5 vol.% of compo-powder (NiAl + 20 wt.% Al2O3) | 1200 | 6.75 ± 0.45 |
Series II | 1300 | 8.13 ± 0.55 | |
Series III | 1400 | 7.42 ± 0.75 | |
Series IV | Al2O3 + 5 vol.% of compo-powder (NiAl + 20 wt.% Al2O3) | 1200 | 5.84 ± 0.35 |
Series V | 1300 | 6.72 ± 0.73 | |
Series VI | 1400 | 8.39 ± 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zygmuntowicz, J.; Konopka, K.; Krasnowski, M.; Piotrkiewicz, P.; Wachowski, M.; Żurowski, R.; Cymerman, K.; Kulikowski, K.; Sobiecki, R. Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sintering. Materials 2023, 16, 4136. https://doi.org/10.3390/ma16114136
Zygmuntowicz J, Konopka K, Krasnowski M, Piotrkiewicz P, Wachowski M, Żurowski R, Cymerman K, Kulikowski K, Sobiecki R. Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sintering. Materials. 2023; 16(11):4136. https://doi.org/10.3390/ma16114136
Chicago/Turabian StyleZygmuntowicz, Justyna, Katarzyna Konopka, Marek Krasnowski, Paulina Piotrkiewicz, Marcin Wachowski, Radosław Żurowski, Konrad Cymerman, Krzysztof Kulikowski, and Robert Sobiecki. 2023. "Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sintering" Materials 16, no. 11: 4136. https://doi.org/10.3390/ma16114136
APA StyleZygmuntowicz, J., Konopka, K., Krasnowski, M., Piotrkiewicz, P., Wachowski, M., Żurowski, R., Cymerman, K., Kulikowski, K., & Sobiecki, R. (2023). Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sintering. Materials, 16(11), 4136. https://doi.org/10.3390/ma16114136