A Form of Non-Volatile Solid-like Hexadecane Found in Micron-Scale Silica Microtubule
Abstract
:1. Introduction
2. Methods
2.1. Method for Preparing TEM Samples
2.2. NMR Sample Preparation Method
2.3. Preparation Method to Adjust the Silanol Density of the Sample
3. Results
3.1. The Discovery of Anomalous Wall-Bound Hexadecane in the Silica Microtubules
3.2. Abnormal Structural Characteristics of the Hexadecane on the Inner Surface of Silica Microtubules
3.3. The High-Density Aggregation of Silanol on the Silica Microtubule Interior Is an Important Reason for the Formation of Anomalous Hexadecane
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bjornehohn, E.; Hansen, M.H.; Hodgson, A.; Liu, L.-M.; Limmer, D.T.; Michaelides, A.; Pedevilla, P.; Rossmeisl, J.; Shen, H.; Tocci, G.; et al. Water at interfaces. Chem. Rev. 2016, 116, 7698–7726. [Google Scholar] [CrossRef] [PubMed]
- Dermentzis, K.; Christoforidis, A.; Valsamidou, E. Removal of hexavalent chromium from electroplating wastewater by electrocoagulation with iron electrodes. Glob. Nest J. 2011, 13, 412–418. [Google Scholar]
- Marmanis, D.; Diamantis, V.; Thysiadou, A.; Kokkinosa, N.; Christoforidis, A. Comparison of electro-oxidation (BDD anode and Ti/Pt cathode) and electro-coagulation (aluminum electrodes) for the treatment of raw landfll leachate. Desalination Water Treat. 2022, 260, 203–208. [Google Scholar] [CrossRef]
- Cortright, R.D.; Davda, R.R.; Dumesic, J.A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002, 418, 964–967. [Google Scholar] [CrossRef]
- Mu, R.T.; Zhao, Z.J.; Dohnalek, Z.; Gong, J. Structural motifs of water on metal oxide surfaces. Chem. Soc. Rev. 2017, 46, 1785–1806. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Surblys, D.; Kawagoe, Y.; Matsubara, H.; Ohara, T. A molecular dynamics study of heat transfer over an ultra-thin liquid film with surfactant between solid surfaces. J. Appl. Phys. 2019, 126, 185302. [Google Scholar] [CrossRef]
- Neto, C.; Evans, D.R.; Bonaccurso, E.; Butt, H.-J.; Craig, V.S.J. Boundary slip in Newtonian liquids: A review of experimental studies. Rep. Prog. Phys. 2005, 68, 2859. [Google Scholar] [CrossRef]
- Kurotani, Y.; Tanaka, H. A novel physical mechanism of liquid flow slippage on a solid surface. Sci. Adv. 2020, 6, 0504. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Guo, H.; Yang, Z.; Wang, X.; Sun, Y.; Xu, H.; Zhang, H.; Lu, H.; Meng, H. Boundary retention layer influence on permeability of tight reservoir. J. Pet. Eng. 2018, 168, 562–568. [Google Scholar] [CrossRef]
- Hardikar, R.P.; Mondal, U.; Thakkar, F.M.; Roy, S.; Ghosh, P. Theoretical investigations of a platinum-water interface using quantum-mechanics-molecular-mechanics based molecular dynamics simulations. Phys. Chem. Chem. Phys. 2019, 21, 24345–24353. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Yang, S.; Gu, P.; Yang, G. Structure, Dynamics, and Stability of Water Molecules during Interfacial Interaction with Clay Minerals: Strong Dependence on Surface Charges. ACS Omega 2019, 4, 5932–5936. [Google Scholar] [CrossRef] [PubMed]
- Schnupf, U.; Brady, J.W. Water Structuring Above Solutes with Planar Hydrophobic Surfaces. Phys. Chem. Chem. Phys. 2017, 19, 11851–11863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Fenter, P.; Nagy, K.L.; Schlegel, M.L.; Sturchio, N.C. Molecular-Scale Density Oscillations in Water Adjacent to a Mica Surface. Phys. Rev. Lett. 2001, 87, 156103. [Google Scholar] [CrossRef]
- Lecot, S.; Lavigne, A.; Yang, Z.; Chevolot, Y.; Yeromonahos, C. Effects of the Chemical and Structural Properties of Silane Monolayers on the Organization of Water Molecules and Ions at Interfaces, from Molecular Dynamics Simulations. Langmuir 2021, 37, 5563–5572. [Google Scholar] [CrossRef]
- Argyris, D.; Tummala, N.R.; Striolo, A.; Cole, D.R. Molecular Structure and Dynamics in Thin Water Films at the Silica and Graphite Surfaces. J. Phys. Chem. C 2008, 112, 13587. [Google Scholar] [CrossRef]
- Odelius, M.; Bernasconi, M.; Parrinello, M. Two Dimensional Ice Adsorbed on Mica Surface. Phys. Rev. Lett. 1997, 78, 2855–2858. [Google Scholar] [CrossRef]
- Bourg, I.C.; Lee, S.S.; Fenter, P.; Tournassat, C. Stern Layer Structure and Energetics at Mica-Water Interfaces. J. Phys. Chem. C 2017, 121, 9402–9412. [Google Scholar] [CrossRef]
- Smith, P.; Lynden-Bell, R.M.; Smith, W. The behaviour of liquid alkanes near interfaces. Mol. Phys. 2000, 98, 255–260. [Google Scholar] [CrossRef]
- Martí, J.; Nagy, G.; Guàrdia, E.; Gordillo, M.C. Molecular dynamics simulation of liquid water confined inside graphite channels: Dielectric and dynamical properties. J. Phys. Chem. B 2006, 110, 23987–23994. [Google Scholar] [CrossRef]
- Boily, J.-F. Water Structure and Hydrogen Bonding at Goethite/Water Interfaces: Implications for Proton Affinities. J. Phys. Chem. C 2015, 116, 4714–4724. [Google Scholar] [CrossRef]
- Chilukoti, H.K.; Kikugawa, G.; Ohara, T. Structure and transport properties of liquid alkanes in the vicinity of α-quartz surfaces. Int. J. Heat Mass Transf. 2014, 79, 846–857. [Google Scholar] [CrossRef]
- Zhao, G.; Tan, Q.; Xiang, L.; Cai, D.; Zeng, H.; Yi, H.; Ni, Z.; Chen, Y. Structure and properties of water film adsorbed on mica surfaces. J. Chem. Phys. 2015, 143, 1538. [Google Scholar] [CrossRef] [PubMed]
- Maeda, N.; Kohonen, M.M.; Christenson, H.K. Phase transition of n-alkane layers adsorbed on mica. Phys. Rev. E 2000, 61, 7239–7242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crupi, V.; Majolino, D.; Venuti, V. Diffusional and vibrational dynamics of water in NaA zeolites by neutron and Fourier transform infrared spectroscopy. J. Phys. Condens. Matter 2004, 16, S5297–S5316. [Google Scholar] [CrossRef]
- Anderson, A.; Ashurst, W.R. Interfacial Water Structure on a Highly Hydroxylated Silica Film. Langmuir 2009, 25, 11549–11554. [Google Scholar] [CrossRef]
- Algara-Siller, G.; Lehtinen, O.; Wang, F.C.; Nair, R.R.; Geim, A.K. Square ice in graphene nanocapillaries. Nature 2014, 519, 7544. [Google Scholar] [CrossRef] [Green Version]
- Tsukahara, T.; Mizutani, W.; Mawatari, K.; Kitamori, T. NMR studies of structure and dynamics of liquid molecules confined in extended nanospaces. J. Phys. Chem. B 2009, 113, 10808–10816. [Google Scholar] [CrossRef]
- Tuladhar, A.; Dewan, S.; Pezzotti, S.; Brigiano, F.S.; Creazzo, F.; Gaigeot, M.; Borguet, E. Ions Tune Interfacial Water Structure and Modulate Hydrophobic Interactions at Silica Surfaces. J. Am. Chem. Soc. 2020, 142, 6991–7000. [Google Scholar] [CrossRef]
- Eftekhari-Bafrooei, A.; Borguet, E. Effect of surface charge on the vibrational dynamics of interfacial water. J. Am. Chem. Soc. 2009, 131, 12034–12035. [Google Scholar] [CrossRef]
- Eftekhari-Bafrooei, A.; Borguet, E. Effect of Electric Fields on the Ultrafast Vibrational Relaxation of Water at a Charged Solid-Liquid Interface as Probed by Vibrational Sum Frequency Generation. J. Phys. Chem. Lett. 2011, 2, 1353–1358. [Google Scholar] [CrossRef]
- Borguet, E.B. Effect of Hydrogen-Bond Strength on the Vibrational Relaxation of Interfacial Water. J. Am. Chem. Soc. 2010, 132, 3756–3761. [Google Scholar]
- Teschke, O.; Ce Otto, G.; Souza, E.D. Interfacial water dielectric-permittivity-profile measurements using atomic force microscopy. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2001, 64, 011605. [Google Scholar] [CrossRef] [PubMed]
- Ataka, K.I.; Yotsuyanagi, T.; Osawa, M. Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy. J. Phys. Chem. 1996, 100, 10664–10672. [Google Scholar] [CrossRef]
- Ross, F.M. Opportunities and challenges in liquid cell electron microscopy. Science 2015, 350, aaa9886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomo, Y.; Takahashi, K.; Nishiyama, T.; Ikuta, T.; Takata, Y. Nanobubble nucleation studied using Fresnel fringes in liquid cell electron microscopy. Int. J. Heat Mass Transf. 2017, 108, 1460–1465. [Google Scholar] [CrossRef]
- Ye, H.; Naguib, N.; Gogotsi, Y. TEM observation of water confined in carbon nanotubes. Microsc. Microanal. 2004, 10, 366–367. [Google Scholar] [CrossRef]
- Tomo, Y.; Askounis, A.; Ikuta, T.; Takata, Y.; Sefiane, K.; Takahashi, K. Superstable Ultrathin Water Film Confined in a Hydrophilized Carbon Nanotube. Nano Lett. 2018, 18, 1869–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanjari, E. A new simple method for accurate calculation of saturated vapor pressure. Thermochim. Acta 2013, 560, 12–16. [Google Scholar] [CrossRef]
- Protsak, I.S.; Morozov, Y.M.; Dong, W.; Le, Z.; Henderson, I.M. A 29Si, 1H, and 13C Solid-State NMR Study on the Surface Species of Various Depolymerized Organosiloxanes at Silica Surface. Nanoscale Res. Lett. 2019, 14, 160. [Google Scholar] [CrossRef] [Green Version]
- Hartmeyer, G.; Marichal, C.; Lebeau, B. Speciation of Silanol Groups in Precipitated Silica Nanoparticles by ~1H MAS NMR Spectroscopy. J. Phys. Chem. C. Nanomater. Interfaces 2007, 111, 9066–9071. [Google Scholar] [CrossRef]
- Kim, H.N.; Lee, S.K. Atomic structure and dehydration mechanism of amorphous silica: Insights from ~(29)Si and 1H solid-state MAS NMR study of SiO2 nanoparticles. Geochim. Cosmochim. Acta J. Geochem. Soc. Meteorit. Soc. 2013, 120, 39–64. [Google Scholar] [CrossRef]
- Zhuravlev, L.T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A Physicochem. Eng. Asp. 2000, 173, 1–38. [Google Scholar] [CrossRef]
- Kai, J.; Xie, B.; Fu, D.; Luo, F.; Liu, G.; Su, Y.; Wang, D. Solid-Solid Phase Transition of n-Alkanes in Multiple Nanoscale Confinement. J. Phys. Chem. B 2010, 114, 1388–1392. [Google Scholar]
- Yang, J.; Meng, S.; Xu, L.; Wang, E.G. Water adsorption on hydroxylated silica surfaces studied using the density functional theory. Phys. Rev. B 2005, 71, 35413–35425. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.; Meyer, B.; Setvin, M.; Schmid, M.; Diebold, U. Direct assessment of the acidity of individual surface hydroxyls. Nature 2021, 592, 722–725. [Google Scholar] [CrossRef]
- Madathingal, R.R.; Wunder, S.L. Thermal degradation of poly(methyl methacrylate) on SiO2 nanoparticles as a function of SiO2 size and silanol density. Thermochim. Acta 2011, 526, 83–89. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q. Nickel phyllosilicate derived Ni/SiO2 catalysts for CO2 methanation: Identifying effect of silanol group concentration. J. CO2 Util. 2021, 50, 101587. [Google Scholar] [CrossRef]
- Seo, J.; Kim, J.H.; Lee, M.; Moon, J.; Yi, D.K.; Paik, U. Size-dependent interactions of silica nanoparticles with a flat silica surface. J. Colloid Interface Sci. 2016, 483, 177–184. [Google Scholar] [CrossRef]
- Sun, B.B.; Wang, Y.B.; Wen, J.; Yang, H.; Sui, M.L.; Wang, J.Q.; Ma, E. Artifacts induced in metallic glasses during TEM sample preparation. Scr. Mater. 2005, 53, 805–809. [Google Scholar] [CrossRef]
- Sarkar, R.; Rentenberger, C.; Rajagopalan, J. Electron Beam Induced Artifacts During in situ TEM Deformation of Nanostructured Metals. Sci. Rep. 2015, 5, 16345. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Zhang, Q. Universality and scaling laws among fingers at Rayleigh-Taylor and Richtmyer-Meshkov unstable interfaces in different dimensions. Phys. D Nonlinear Phenom. 2020, 403, 132304. [Google Scholar] [CrossRef]
- Wang, Y.; Shardt, N.; Lu, C.; Li, H.; Elliott, J.A.W.; Jin, Z. Validity of the Kelvin equation and the equation-of-state-with-capillary-pressure model for the phase behavior of a pure component under nanoconfinement. Chem. Eng. Sci. 2020, 226, 12–16. [Google Scholar] [CrossRef]
- Cheng, Z.; Shan, H.; Sun, Y.; Zhang, L.; Jiang, H.; Li, C. Evolution mechanism of surface hydroxyl groups of silica during heat treatment. Appl. Surf. Sci. 2020, 513, 145766. [Google Scholar] [CrossRef]
- Sanders, S.E.; Vanselous, H.; Petersen, P.B. Water at surfaces with tunable surface chemistries. J. Phys. Condens. Matter 2018, 30, 113001. [Google Scholar] [CrossRef]
- Urashima, S.-H.; Uchida, T.; Yui, H. A hydrogen-bonding structure in self-formed nanodroplets of water adsorbed on amorphous silica revealed via surface-selective vibrational spectroscopy. Phys. Chem. Chem. Phys. 2020, 22, 27031–27036. [Google Scholar] [CrossRef]
- Li, T.; Song, H.; Wang, J.; Wang, Y.; Killough, J. An analytical method for modeling and analysis gas-water relative permeability in nanoscale pores with interfacial effects. Int. J. Coal Geol. 2021, 159, 71–81. [Google Scholar] [CrossRef]
- Yang, Y.F.; Wang, K.; Lv, Q.F.; Askari, R.; Mei, Q.-Y.; Yao, J.; Hou, J.-X.; Zhang, K.; Li, A.-F.; Wang, C.-C. Flow simulation considering adsorption boundary layer based on digital rock and finite element method. Pet. Sci. 2021, 18, 183–194. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, W.; Yue, X.; Zou, J.; Zhang, L.; Fu, Y.-C.; Yan, R. A Form of Non-Volatile Solid-like Hexadecane Found in Micron-Scale Silica Microtubule. Materials 2023, 16, 9. https://doi.org/10.3390/ma16010009
An W, Yue X, Zou J, Zhang L, Fu Y-C, Yan R. A Form of Non-Volatile Solid-like Hexadecane Found in Micron-Scale Silica Microtubule. Materials. 2023; 16(1):9. https://doi.org/10.3390/ma16010009
Chicago/Turabian StyleAn, Weiqing, Xiangan Yue, Jirui Zou, Lijuan Zhang, Yu-Chun Fu, and Rongjie Yan. 2023. "A Form of Non-Volatile Solid-like Hexadecane Found in Micron-Scale Silica Microtubule" Materials 16, no. 1: 9. https://doi.org/10.3390/ma16010009
APA StyleAn, W., Yue, X., Zou, J., Zhang, L., Fu, Y. -C., & Yan, R. (2023). A Form of Non-Volatile Solid-like Hexadecane Found in Micron-Scale Silica Microtubule. Materials, 16(1), 9. https://doi.org/10.3390/ma16010009