Thermomechanical Characterization and Modeling of NiTi Shape Memory Alloy Coil Spring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Methodology
2.2. Fractional Calculus and Fractional Zener Model
3. Results and Discussion
3.1. Thermomechanical Characterization
3.2. Dynamic Mechanical Analysis of NiTi SMA
3.3. Comparison between FZM and Experimental Data
3.4. Vibratory Response of Mass-Spring NiTi System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohd Jani, J.; Leary, M.; Subic, A.; Gibson, M.A. A Review of Shape Memory Alloy Research, Applications and Opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Araujo Mota, C.A.; Araujo, C.J.; Barbosa de Lima, A.G.; Freire de Andrade, T.H.; Silveira Lira, D. Smart Materials—Theory and Applications. Diffus. Found. 2017, 14, 107–127. [Google Scholar] [CrossRef]
- Velvaluri, P.; Soor, A.; Plucinsky, P.; de Miranda, R.L.; James, R.D.; Quandt, E. Origami-Inspired Thin-Film Shape Memory Alloy Devices. Sci. Rep. 2021, 11, 10988. [Google Scholar] [CrossRef] [PubMed]
- Costanza, G.; Tata, M.E. Shape Memory Alloys for Aerospace, Recent Developments, and New Applications: A Short Review. Materials 2020, 13, 1856. [Google Scholar] [CrossRef]
- Balasubramanian, M.; Srimath, R.; Vignesh, L.; Rajesh, S. Application of Shape Memory Alloys in Engineering—A Review. J. Phys. Conf. Ser. 2021, 2054, 012078. [Google Scholar] [CrossRef]
- Shimoga, G.; Kim, T.H.; Kim, S.Y. An Intermetallic NiTi-Based Shape Memory Coil Spring for Actuator Technologies. Metals 2021, 11, 1212. [Google Scholar] [CrossRef]
- Komarov, V.; Khmelevskaya, I.; Karelin, R.; Postnikov, I.; Korpala, G.; Kawalla, R.; Prahl, U.; Yusupov, V.; Prokoshkin, S. Deformation Behavior, Structure and Properties of an Equiatomic Ti–Ni Shape Memory Alloy Compressed in a Wide Temperature Range. Trans. Indian Inst. Met. 2021, 74, 2419–2426. [Google Scholar] [CrossRef]
- Komarov, V.; Khmelevskaya, I.; Karelin, R.; Kawalla, R.; Korpala, G.; Prahl, U.; Yusupov, V.; Prokoshkin, S. Deformation Behavior, Structure, and Properties of an Aging Ti-Ni Shape Memory Alloy after Compression Deformation in a Wide Temperature Range. JOM 2021, 73, 620–629. [Google Scholar] [CrossRef]
- Poletika, T.M.; Girsova, S.L.; Lotkov, A.I.; Kudryachov, A.N.; Girsova, N.V. Structure and Multistage Martensite Transformation in Nanocrystalline Ti-50.9Ni Alloy. Metals 2021, 11, 1262. [Google Scholar] [CrossRef]
- Bucsek, A.N.; Hudish, G.A.; Bigelow, G.S.; Noebe, R.D.; Stebner, A.P. Composition, Compatibility, and the Functional Performances of Ternary NiTiX High-Temperature Shape Memory Alloys. Shape Mem. Superelasticity 2016, 2, 62–79. [Google Scholar] [CrossRef]
- López-Ferreño, I.; Gómez-Cortés, J.F.; Breczewski, T.; Ruiz-Larrea, I.; Nó, M.L.; San Juan, J.M. High-Temperature Shape Memory Alloys Based on the Cu-Al-Ni System: Design and Thermomechanical Characterization. J. Mater. Res. Technol. 2020, 9, 9972–9984. [Google Scholar] [CrossRef]
- Benafan, O.; Bigelow, G.S.; Garg, A.; Noebe, R.D.; Gaydosh, D.J.; Rogers, R.B. Processing and Scalability of NiTiHf High-Temperature Shape Memory Alloys. Shape Mem. Superelasticity 2021, 7, 109–165. [Google Scholar] [CrossRef]
- Yamabe-Mitarai, Y. TiPd-and TiPt-Based High-Temperature Shape Memory Alloys: A Review on Recent Advances. Metals 2020, 10, 1531. [Google Scholar] [CrossRef]
- Luo, H.Y.; Abel, E.W. A Comparison of Methods for the Training of NiTi Two-Way Shape Memory Alloy. Smart Mater. Struct. 2007, 16, 2543–2549. [Google Scholar] [CrossRef]
- Holanda, S.A.; Silva, A.A.; De Araújo, C.J.; De Aquino, A.S. Study of the Complex Stiffness of a Vibratory Mechanical System with Shape Memory Alloy Coil Spring Actuator. Shock Vib. 2014, 2014, 162781. [Google Scholar] [CrossRef]
- Aguiar, R.A.A.; Savi, M.A.; Pacheco, P.M.C.L. Experimental Investigation of Vibration Reduction Using Shape Memory Alloys. J. Intell. Mater. Syst. Struct. 2013, 24, 247–261. [Google Scholar] [CrossRef]
- Cho, D.; Park, J.; Kim, J. Automatic Actuation of the Anti-Freezing System Using SMA Coil Springs. Metals 2021, 11, 1424. [Google Scholar] [CrossRef]
- de Melo Santiago, J.J.; de Brito Simoes, J.; de Araujo, C.J. Thermomechanical Characterization of Superelastic Ni-Ti SMA Helical Extension Springs Manufactured by Investment Casting. Mater. Res. 2019, 22, e20180852. [Google Scholar] [CrossRef]
- Rentería-Baltiérrez, F.Y.; Reyes-Melo, M.E.; Puente-Córdova, J.G.; López-Walle, B. Application of Fractional Calculus in the Mechanical and Dielectric Correlation Model of Hybrid Polymer Films with Different Average Molecular Weight Matrices. Polym. Bull. 2022, 80, 6327–6347. [Google Scholar] [CrossRef]
- Rentería-Baltiérrez, F.Y.; Reyes-Melo, M.E.; Puente-Córdova, J.G.; López-Walle, B. Correlation between the Mechanical and Dielectric Responses in Polymer Films by a Fractional Calculus Approach. J. Appl. Polym. Sci. 2021, 138, 49853. [Google Scholar] [CrossRef]
- Valério, D.; Machado, J.T.; Kiryakova, V. Some Pioneers of the Applications of Fractional Calculus. Fract. Calc. Appl. Anal. 2014, 17, 552–578. [Google Scholar] [CrossRef]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A New Collection of Real World Applications of Fractional Calculus in Science and Engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Diethelm, K.; Kiryakova, V.; Luchko, Y.; Machado, J.A.T.; Tarasov, V.E. Trends, Directions for Further Research, and Some Open Problems of Fractional Calculus. Nonlinear Dyn. 2022, 107, 3245–3270. [Google Scholar] [CrossRef]
- Reyes-Melo, M.E.; Martínez-Vega, J.J.; Guerrero-Salazar, C.A.; Ortiz-Méndez, U. Mechanical and Dielectric Relaxation Phenomena of Poly(Ethylene-2,6-Napthalene Dicarboxylate) by Fractional Calculus Approach. J. Appl. Polym. Sci. 2006, 102, 3354–3368. [Google Scholar] [CrossRef]
- Rentería-Baltiérrez, F.Y.; Reyes-Melo, M.E.; López-Walle, B.; García-Loera, A.F. The Effect of Iron Oxide Nanoparticles on the Mechanical Relaxation of Magnetic Polymer Hybrid Films Composed of a Polystyrene Matrix, a Fractional Calculus Approach. J. Appl. Polym. Sci. 2019, 136, 47840. [Google Scholar] [CrossRef]
- Puente-Córdova, J.G.; Reyes-Melo, M.E.; Palacios-Pineda, L.M.; Martínez-Perales, I.A.; Martínez-Romero, O.; Elías-Zúñiga, A. Fabrication and Characterization of Isotropic and Anisotropic Magnetorheological Elastomers, Based on Silicone Rubber and Carbonyl Iron Microparticles. Polymers 2018, 10, 1343. [Google Scholar] [CrossRef]
- Reyes-Melo, M.E.; Rentería-Baltiérrez, F.Y.; López-Walle, B.; López-Cuellar, E.; de Araujo, C.J. Application of Fractional Calculus to Modeling the Dynamic Mechanical Analysis of a NiTi SMA Ribbon. J. Therm. Anal. Calorim. 2016, 126, 593–599. [Google Scholar] [CrossRef]
- Sales Teodoro, G.; Tenreiro Machado, J.A.; Capelas de Oliveira, E. A Review of Definitions of Fractional Derivatives and Other Operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Tenreiro Machado, J.A. What Is a Fractional Derivative? J. Comput. Phys. 2015, 293, 4–13. [Google Scholar] [CrossRef]
- Bidaux, J.E.; Bataillard, L.; Manson, J.A.; Gotthardt, R. Phase Transformation Behavior of Thin Shape Memory Alloy Wires Embedded in a Polymer Matrix Composite. J. Phys. 1993, 3, 561–564. [Google Scholar] [CrossRef]
- San Juan, J.; Nó, M.L. Damping Behavior during Martensitic Transformation in Shape Memory Alloys. J. Alloys Compd. 2003, 355, 65–71. [Google Scholar] [CrossRef]
- Da Silva, N.J.; Grassi, E.N.D.; De Araújo, C.J. Dynamic Properties of NiTi Shape Memory Alloy and Classic Structural Materials: A Comparative Analysis. Mater. Sci. Forum 2010, 643, 37–41. [Google Scholar] [CrossRef]
- Ikuta, K.; Tsukamoto, M.; Hirose, S. Mathematical Model and Experimental Verification of Shape Memory Alloy for Designing Micro Actuator. In Proceedings of the 1991 IEEE Micro Electro Mechanical Systems, Nara, Japan, 30 January–2 February 1991; pp. 103–108. [Google Scholar] [CrossRef]
- Romano, R.; Tannuri, E.A. Modeling, Control and Experimental Validation of a Novel Actuator Based on Shape Memory Alloys. Mechatronics 2009, 19, 1169–1177. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.F.; Yépez-Martínez, H.; Calderón-Ramón, C.; Cruz-Orduña, I.; Escobar-Jiménez, R.F.; Olivares-Peregrino, V.H. Modeling of a Mass-Spring-Damper System by Fractional Derivatives with and without a Singular Kernel. Entropy 2015, 17, 6289–6303. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.F.; Rosales-García, J.J.; Bernal-Alvarado, J.J.; Córdova-Fraga, T.; Guzmán-Cabrera, R. Fractional Mechanical Oscillators. Rev. Mex. Física 2012, 58, 348–352. [Google Scholar]
- Adeodato, A.; Duarte, B.T.; Monteiro, L.L.S.; Pacheco, P.M.C.L.; Savi, M.A. Synergistic Use of Piezoelectric and Shape Memory Alloy Elements for Vibration-Based Energy Harvesting. Int. J. Mech. Sci. 2021, 194, 106206. [Google Scholar] [CrossRef]
Element | Weight (%) | Atomic (%) |
---|---|---|
Ni | 45.05 | 50.12 |
Ti | 54.95 | 49.88 |
Parameters | Values | Units |
---|---|---|
EU | 1.31 × 1010 | Pa |
E0 | 4.42 × 1010 | Pa |
A | 0.29 | - |
Β | 0.67 | - |
Eaa | 0.66 | eV |
Eab | 0.57 | eV |
τ0a | 1 × 10−13 | s |
τ0b | 1 × 10−13 | s |
T* | 99 | °C |
T0 | 28 | °C |
Natural Frequency (Hz) | Stiffness (N/mm) | |
---|---|---|
State A | 4.98 | 0.256 |
State B | 5.32 | 0.292 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puente-Córdova, J.G.; Rentería-Baltiérrez, F.Y.; Diabb-Zavala, J.M.; Mohamed-Noriega, N.; Bello-Gómez, M.A.; Luna-Martínez, J.F. Thermomechanical Characterization and Modeling of NiTi Shape Memory Alloy Coil Spring. Materials 2023, 16, 3673. https://doi.org/10.3390/ma16103673
Puente-Córdova JG, Rentería-Baltiérrez FY, Diabb-Zavala JM, Mohamed-Noriega N, Bello-Gómez MA, Luna-Martínez JF. Thermomechanical Characterization and Modeling of NiTi Shape Memory Alloy Coil Spring. Materials. 2023; 16(10):3673. https://doi.org/10.3390/ma16103673
Chicago/Turabian StylePuente-Córdova, Jesús G., Flor Y. Rentería-Baltiérrez, José M. Diabb-Zavala, Nasser Mohamed-Noriega, Mario A. Bello-Gómez, and Juan F. Luna-Martínez. 2023. "Thermomechanical Characterization and Modeling of NiTi Shape Memory Alloy Coil Spring" Materials 16, no. 10: 3673. https://doi.org/10.3390/ma16103673
APA StylePuente-Córdova, J. G., Rentería-Baltiérrez, F. Y., Diabb-Zavala, J. M., Mohamed-Noriega, N., Bello-Gómez, M. A., & Luna-Martínez, J. F. (2023). Thermomechanical Characterization and Modeling of NiTi Shape Memory Alloy Coil Spring. Materials, 16(10), 3673. https://doi.org/10.3390/ma16103673