Feldspar-Modified Methacrylic Composite for Fabrication of Prosthetic Teeth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Their Preparation
2.2. Materials Characterization
2.3. Mechanical Analysis
2.4. Cytotoxicity Tests
2.5. Statistical Analysis
3. Results and Discussion
3.1. FT-IR Spectroscopy
3.2. Differential Scanning Calorimetry
3.3. Mechanical Analysis
3.4. Biological Compatibility Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hildebrand, H.F. Biomaterials—A history of 7000 years. Bio Nano Mater. 2013, 14, 3–4. [Google Scholar] [CrossRef]
- Sushma, R.; Vande, A.V.; Malvika, S.R.; Abhijeet, K.; Pronob, K.S. A comparative study of the mechanical properties of clear and pink coloured denture base acrylic resins. Ann. Afr. Med. 2018, 17, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Bajunaid, S.O.; Baras, B.H.; Weir, M.D.; Xu, H.H.K. Denture Acrylic Resin Material with Antibac-terial and Protein-Repelling Properties for the Prevention of Denture Stomatitis. Polymers 2022, 14, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Mello, P.C.; Coppedê, A.R.; Macedo, A.P.; de Mattos, M.G.; Rodrigues, R.C.; Ribeiro, R.F. Abrasion wear resistance of different artificial teeth opposed to metal and composite antagonists. J. Appl. Oral Sci. 2009, 17, 451–456. [Google Scholar] [CrossRef]
- Muhammad, N.; Sarfraz, Z.; Zafar, M.S. Characterization of various acrylate based artificial teeth for denture fabrication. J. Mater. Sci. Mater. Med. 2022, 33, 17. [Google Scholar] [CrossRef] [PubMed]
- Sayed, M.E.; Lunkad, H.; Fageeh, I.; Jaafari, M.; Tawhari, A.; Muaidi, T.; Alshehri, M.I.; Jethlia, A.; Jain, S. Comparative Evaluation of Compressive Bond Strength between Acrylic Denture Base and Teeth with Various Combinations of Mechanical and Chemical Treatments. Coatings 2021, 11, 1527. [Google Scholar] [CrossRef]
- Sa, Y.; Yang, F.; Wang, Y.; Wolke, J.G.C.; Jansen, J.A. Modifications of Poly(Methyl Methacrylate) Cement for Application in Orthopedic Surgery. Adv. Exp. Med. Biol. 2018, 1078, 119–134. [Google Scholar] [CrossRef]
- Ku, K.L.; Wu, Y.S.; Wang, C.Y.; Hong, D.W.; Chen, Z.X.; Huang, C.A.; Chu, I.M.; Lai, P.L. Incorporation of surface-modified hydroxyapatite into poly(methyl methacrylate) to improve biological activity and bone ingrowth. R. Soc. Open Sci. 2019, 6, 182060. [Google Scholar] [CrossRef]
- Kono, H.; Tsujisaki, H.; Tajima, K. Reinforcing Poly(methyl methacrylate) with Bacterial Cellulose Nanofibers Chemically Modified with Methacryolyl Groups. Nanomaterials 2022, 12, 537. [Google Scholar] [CrossRef]
- Arenas-Arrocena, M.C.; Argueta-Figueroa, L.; García-Contreras, R.; Martínez-Arenas, O.; Camacho-Flores, B.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S. New trends for the processing of poly(methyl methacrylate) biomaterial for dental prosthodontics. In Acrylic Polymers in Healthcare [Internet]; Reddy, B.S., Ed.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Loyaga-Rendon, P.G.; Takahashi, H.; Hayakawa, I.; Iwasaki, N.J. Compositional characteristics and hardness of acrylic and com-posite resin artificial teeth. Prosthet. Dent. 2007, 98, 141–149. [Google Scholar] [CrossRef]
- Raszewski, Z.; Nowakowska-Toporowska, A.; Wezgowiec, J.; Nowakowska, D.; Wieckiewicz, W. Influence of silanized silica and silanized feldspar addition on the mechanical behavior of polymethyl methacrylate resin denture teeth. J. Prosthet. Dent. 2020, 123, 647.e1–647.e7. [Google Scholar] [CrossRef] [PubMed]
- Szabelski, J.; Karpinski, R.; Krakowski, P.; Jonak, J. The Impact of Contaminating Poly (Methyl Methacrylate)(PMMA) Bone Cements on Their Compressive Strength. Materials 2021, 14, 2555. [Google Scholar] [CrossRef] [PubMed]
- Komang-Agung, I.S.; Hydravianto, L.; Sindrawati, O.; William, P.S. Effect of Polymethylmethacrylate-Hydroxyapatite Composites on Callus Formation and Compressive Strength in Goat Vertebral Body. Malays. Orthop. J. 2018, 12, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef]
- ISO 22112:2017; Dentistry—Artificial Teeth for Dental Prostheses. ISO: London, UK, 2017.
- Ghaffari, T.; Hamedirad, F.; Ezzati, B. In Vitro Comparison of Compressive and Tensile Strengths of Acrylic Resins Reinforced by Silver Nanoparticles at 2% and 0.2% Concentrations. J. Dent. Res. Dent. Clin. Dent. Prospect. 2014, 8, 204–209. [Google Scholar] [CrossRef]
- Hayran, Y.; Keskin, Y.; Yılmaz, Ş. Cytotoxicity of polymethylmethacrylate copolymers. Ann. Med. Res. 2019, 26, 1868. [Google Scholar] [CrossRef]
- Balos, S.; Puskar, T.; Potran, M.; Markovic, D.; Pilic, B.; Pavlicevic, J. Modulus of Elasticity, Flexural Strength and Biocompatibility of Poly(methyl methacrylate) Resins With Low Addition of Nanosilica. Res. Rev. J. Dent. Sci. 2016, 4, 22–33. [Google Scholar]
- Özen, J.; Spah, C.; Çalar, A.; Dalkiz, M. In vitro Cytotoxicity of Glass and Carbon Fiber-Reinforced Heat-Polymerized Acrylic Resin Denture Base Material. Turk. J. Med. Sci. 2006, 36, 121–126. [Google Scholar]
- Tugut, F.; Coskun, M.E.; Akin, H.; Dogan, D.O. Investigation of Impact Strength, Water Sorption and Cytotoxicity of Denture Base Resin Reinforced with Polypropylene Fiber: In Vitro Study. J. Adv. Oral Res. 2020, 11, 208–214. [Google Scholar] [CrossRef]
- Saczko, J.; Dominiak, M.; Kulbacka, J.; Chwiłkowska, A.; Krawczykowska, H. A simple and established method of tissue culture of human gingival fibroblasts for gingival augmentation. Folia Histochem. Cytobiol. 2008, 46, 117–119. [Google Scholar] [CrossRef]
- Raszewski, Z.; Kulbacka, J.; Nowakowska-Toporowska, A. Mechanical Properties, Cytotoxicity, and Fluoride Ion Release Capacity of Bioactive Glass-Modified Methacrylate Resin Used in Three-Dimensional Printing Technology. Materials 2022, 15, 1133. [Google Scholar] [CrossRef] [PubMed]
- Ennis, C.P.; Kaiser, R.I. Mechanical studies on the electron induced degradation of polymethyl methacrylate and Kapton. Phys. Chem. Chem. Phys. 2010, 12, 14902–14915. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Srivastava, A.K.; Khatak, B.Q.; Verma, S.; Upadhyay, A.; Sinha, A.K.; Ganguli, T.; Lodha, G.S.; Deb, S.K. Structural modification of poly methyl methacrylate due to electron irradiation. Measurement 2014, 51, 1–8. [Google Scholar] [CrossRef]
- Bosch-Reig, F.; Gimeno-Adelantado, J.V.; Bosch-Mossi, F.; Doménech-Carbó, A. Quantification of minerals from ATR-FTIR spectra with spectral interferences using the MRC method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 181, 7–12. [Google Scholar] [CrossRef]
- Nidal, W.E.; Saied, H.M.; Azlan, A.; Zainal, A.; Mohd, I. Thermal Characterization of Poly(Methyl Methacrylate)Filled with Barium Titanate as Denture Base Material. J. Phys. Sci. 2014, 25, 15–27. [Google Scholar]
- Patil, S.B.; Naveen, B.H.; Patil, N.P. Bonding acrylic teeth to acrylic resin denture bases: A review. Gerodontology 2006, 23, 131–139. [Google Scholar] [CrossRef]
- Adejumoke, A.; Mervyn, L.; Donald, C. The acrylic tooth-denture base bond: Effect of mechanical preparation and surface treatment. Eur. J. Prosthodont. Restor. Dent. 2007, 15, 108–114. [Google Scholar]
- Radford, D.; Juszczyk, A.; Clark, R. The bond between acrylic resin denture teeth and the denture base: Recommendations for best practice. Br. Dent. J. 2014, 216, 165–167. [Google Scholar] [CrossRef]
- Kurt, M.; Saraç, Y.Ş.; Ural, Ç.; Saraç, D. Effect of pre-processing methods on bond strength between acrylic resin teeth and acrylic denture base resin. Gerodontology 2012, 29, e357–e362. [Google Scholar] [CrossRef] [PubMed]
- Prpić, V.; Schauperl, Z.; Glavina, D.; Ćatić, A.; Čimić, S. Comparison of shear bond strengths of different types of denture teeth to different denture base resins. J. Adv. Prosthodont. 2020, 12, 376–382. [Google Scholar] [CrossRef]
- Choi, J.E.; Uy, C.E.; Plaksina, P.; Ramani, R.S.; Ganjigatti, R.; Waddell, J.N. Bond strength of denture teeth to heat-cured, cad/cam and 3d printed denture acrylics. J. Prosthodont. 2020, 29, 415–421. [Google Scholar] [CrossRef]
- Aguiar, E.F.; Tonani, R.; Paiola, F.G.; Chinelatti, M.A.; Arruda, C.N.F.; de Matta, J.C.S.; da Pires-de-Souza, F.C.P. Influence of aging on bond strength of artificial teeth to denture base acrylic resins. Braz. J. Oral Sci. 2018, 17, e18373. [Google Scholar] [CrossRef]
- Saavedra, G.; Valandro, L.F.; Leite, F.P.; Amaral, R.; Ozcan, M.; Bottino, M.A.; Kimpara, E.T. Bond strength of acrylic teeth to denture base resin after various surface conditioning methods before and after thermocycling. Int. J. Prosthodont. 2007, 20, 99–201. [Google Scholar]
- Attik, G.; Brown, R.; Jackson, P.; Creutzenberg, O.; Aboukhamis, I.; Rihn, B.H. Internalization, cytotoxicity, apoptosis, and tumor necrosis factor-alpha expression in rat alveolar macrophages exposed to various dusts occurring in the ceramics industry. Inhal. Toxicol. 2008, 20, 1101–1112. [Google Scholar] [CrossRef]
- Hina, S.; Nisar, N.; Sohai, S. Work Place Related Health Hazards Among Dental Laboratory Technicians in Karachi. J. Pak. Dent. Assoc. 2018, 26, 181–188. [Google Scholar] [CrossRef]
Sample No. | Cervical Part (Neat PMMA)-A [MPa] | Dentin Part (10 wt.% Feldspar)-B [MPa] | Enamel Part (30 wt.% Feldspar)-C [MPa] |
---|---|---|---|
1 | 108.9 | 117.2 | 153.5 |
2 | 97.4 | 113.8 | 164.4 |
3 | 114.0 | 120.6 | 160.7 |
4 | 111.0 | 119.1 | 161.6 |
5 | 106.0 | 121.5 | 158.4 |
AVG | 107.5 AC,AB | 118.4 BC | 159.7 AC,BC |
SD | 6.3 | 3.1 | 4.1 |
Sample No. | Cervical Part (Neat PMMA)-A [MPa] | Dentin Part (10 wt.% Feldspar)-B [MPa] | Enamel Part (30 wt.% Feldspar)-C [MPa] |
---|---|---|---|
1 | 98.2 | 107.3 | 133.6 |
2 | 92.4 | 98.8 | 144.5 |
3 | 97.8 | 101.5 | 150.6 |
4 | 101.0 | 102.5 | 148.7 |
5 | 91.3 | 110.6 | 158.1 |
AVG | 96.1 AC | 104.1 BC | 147.1 |
SD | 4.1 | 4.7 | 9.0 |
Sample No. | 24 h [N] | 7 Days [N] |
---|---|---|
1 | 29.43 | 28.81 |
2 | 24.52 | 26.43 |
3 | 29.04 | 26.12 |
4 | 28.36 | 25.75 |
5 | 26.66 | 25.76 |
AVG | 27.60 | 26.57 |
SD | 2.02 | 1.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raszewski, Z.; Kulbacka, J.; Pakuła, D.; Brząkalski, D.; Przekop, R.E. Feldspar-Modified Methacrylic Composite for Fabrication of Prosthetic Teeth. Materials 2023, 16, 3674. https://doi.org/10.3390/ma16103674
Raszewski Z, Kulbacka J, Pakuła D, Brząkalski D, Przekop RE. Feldspar-Modified Methacrylic Composite for Fabrication of Prosthetic Teeth. Materials. 2023; 16(10):3674. https://doi.org/10.3390/ma16103674
Chicago/Turabian StyleRaszewski, Zbigniew, Julita Kulbacka, Daria Pakuła, Dariusz Brząkalski, and Robert E. Przekop. 2023. "Feldspar-Modified Methacrylic Composite for Fabrication of Prosthetic Teeth" Materials 16, no. 10: 3674. https://doi.org/10.3390/ma16103674
APA StyleRaszewski, Z., Kulbacka, J., Pakuła, D., Brząkalski, D., & Przekop, R. E. (2023). Feldspar-Modified Methacrylic Composite for Fabrication of Prosthetic Teeth. Materials, 16(10), 3674. https://doi.org/10.3390/ma16103674