Transparent Conducting Amorphous IZO Thin Films: An Approach to Improve the Transparent Electrode Quality
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewis, B.G.; Paine, D.C. Applications and processing of transparent conducting oxides. MRS Bull. 2000, 25, 22. [Google Scholar] [CrossRef]
- Morales-Masis, M.; De Wolf, S.; Woods-Robinson, R.; Ager, J.W.; Ballif, C. Transparent Electrodes for Efficient Optoelectronics. Adv. Electron. Mater. 2017, 3, 1600529. [Google Scholar] [CrossRef]
- Kumar, A. Predicting efficiency of solar cells based on transparent conducting electrodes. J. Appl. Phys. 2017, 121, 014502. [Google Scholar] [CrossRef]
- Stadler, A. Transparent Conducting Oxides—An Up-To-Date Overview. Materials 2012, 5, 661–683. [Google Scholar] [CrossRef]
- Wang, T.; Lu, K.; Xu, Z.; Lin, Z.; Ning, H.; Qiu, T.; Yang, Z.; Zheng, H.; Yao, R.; Peng, J. Recent Developments in Flexible Transparent Electrode. Crystals 2021, 11, 511. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, J.; Sun, L.; Huang, H.; Han, J.; Huang, H.; Zhai, L.; Zou, C. Top transparent electrodes for fabricating semitransparent organic and perovskite solar cells. J. Mater. Chem. C 2021, 9, 9102–9123. [Google Scholar] [CrossRef]
- Chen, H.; Wang, H.; Wu, J.; Wang, F.; Zhang, T.; Wang, Y.; Liu, D.; Li, S.; Penty, R.V.; White, I.H. Flexible optoelectronic devices based on metal halide perovskites. Nano Res. 2020, 13, 1997–2018. [Google Scholar] [CrossRef]
- Park, H.; Kim, Y.; Oh, D.; Pham, D.P.; Song, J.; Yi, J. Current Status of Low-temperature TCO Electrode for Solar-cell Application: A Short Review. New Renew. Energy 2021, 17, 1–6. [Google Scholar] [CrossRef]
- Akhmedov, A.; Abduev, A.; Murliev, E.; Asvarov, A.; Muslimov, A.; Kanevsky, V. The ZnO-In2O3 Oxide System as a Material for Low-Temperature Deposition of Transparent Electrodes. Materials 2021, 14, 6859. [Google Scholar] [CrossRef]
- Demiryont, H.; Shannon, K.C. Innovative transparent electrode for flexible displays. Proc. SPIE 2006, 6225, 622519. [Google Scholar] [CrossRef]
- Takatsuji, H.; Tsuji, S.; Kuroda, K.; Saka, H. Novel Transparent Conductive Indium Zinc Oxide Thin Films with Unique Properties. Mater. Trans. JIM 1999, 40, 899–902. [Google Scholar] [CrossRef]
- Ma, C.H.; Chen, E.L.; Lai, Y.H.; Chen, Y.C.; Chang, L.; Chuet, Y.-H. Flexible transparent heteroepitaxial conducting oxide with mobility exceeding 100 cm2 V−1 s−1 at room temperature. NPG Asia Mater. 2020, 12, 70. [Google Scholar] [CrossRef]
- Portillo-Cortez, K.; Islas, S.R.; Serrano-Lázaro, A.; Ortiz, A.; García-Sánchez, M.F.; Alonso, J.C.; Martínez, A.; Ramos, C.; Dutt, A.; Santana, G. A novel soft deposition methodology for textured ZnO:Al thin films as efficient transparent conductive oxide layers. Appl. Surf. Sci. Adv. 2022, 9, 100255. [Google Scholar] [CrossRef]
- Borah, J.; Sarma, B.K. Design strategy and interface chemistry of ageing stable AZO films as high quality transparent conducting oxide. J. Colloid Interface Sci. 2021, 582 Pt B, 1041–1057. [Google Scholar] [CrossRef]
- Asvarov, A.S.; Abduev, A.K.; Akhmedov, A.K.; Kanevsky, V.M. On the Effect of the Co-Introduction of Al and Ga Impurities on the Electrical Performance of Transparent Conductive ZnO-Based Thin Films. Materials 2022, 15, 5862. [Google Scholar] [CrossRef]
- Brooks, H. Theory of the Electrical Properties of Germanium and Silicon. In Advances in Electronics and Electron Physics; Marton, L., Ed.; Academic Press: New York, NY, USA, 1955; Volume 7, pp. 85–182. [Google Scholar] [CrossRef]
- Dingle, R.B. Scattering of Electrons and Holes by Charged Donors and Acceptors in Semiconductors. Philos. Mag. 1955, 46, 831–840. [Google Scholar] [CrossRef]
- Bellingham, J.R.; Phillips, W.A.; Adkins, C.J. Intrinsic Performance Limits in Transparent Conducting Oxides. J. Mater. Sci. Lett. 1992, 11, 263–265. [Google Scholar] [CrossRef]
- Bellingham, J.R.; Phillips, W.A.; Adkins, C.J. Electrical and optical properties of amorphous indium oxide. J. Phys. Condens. Matter 1990, 2, 6207–6221. [Google Scholar] [CrossRef]
- Bright, C.I. Deposition and Performance Challenges of Transparent Conductive Oxides on Plastic Substrates. In Transparent Electronics: From Synthesis to Applications; Facchetti, A., Marks, T.J., Eds.; Wiley Online Books: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Robbins, J.J.; Wolden, C.A. High mobility oxides: Engineered structures to overcome intrinsic performance limitations of transparent conducting oxides. Appl. Phys. Lett. 2003, 83, 3933–3935. [Google Scholar] [CrossRef]
- Cohen, D.J.; Barnett, S.A. Predicted electrical properties of modulation-doped ZnO-based transparent conducting oxides. J. Appl. Phys. 2005, 98, 053705. [Google Scholar] [CrossRef]
- Rauf, I.A. Low resistivity and high mobility tin-doped indium oxide films. Mater. Lett. 1993, 18, 123–127. [Google Scholar] [CrossRef]
- Calnan, S.; Tiwari, A.N. High mobility transparent conducting oxides for thin film solar cells. Thin Solid Film. 2010, 518, 1839–1849. [Google Scholar] [CrossRef]
- Goncalves, G.; Grasso, V.; Barquinha, P.; Pereira, L.; Elamurugu, E.; Brignone, M.; Martins, R.; Lambertini, V.; Fortunato, E. Role of Room Temperature Sputtered High Conductive and High Transparent Indium Zinc Oxide Film Contacts on the Performance of Orange, Green, and Blue Organic Light Emitting Diodes. Plasma Process. Polym. 2011, 8, 340–345. [Google Scholar] [CrossRef]
- Morales-Masis, M.; De Nicolas, S.M.; Holovsky, J.; De Wolf, S.; Ballif, C. Low-Temperature High-Mobility Amorphous IZO for Silicon Heterojunction Solar Cells. IEEE J. Photovolt. 2015, 5, 1340–1347. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N.; Stanculescu, A.; Breazu, C.; Florica, C.; Rasoga, O.; Stanculescu, F.; Socol, G. IZO deposited by PLD on flexible substrate for organic heterostructures. Appl. Phys. A 2017, 123, 371. [Google Scholar] [CrossRef]
- Lee, W.-J.; Cho, D.-H.; Kim, Y.D.; Choi, M.-W.; Choi, J.C.; Chung, Y.-D. Thermally evaporated amorphous InZnO thin film applicable to transparent conducting oxide for solar cells. J. Alloys Compd. 2019, 806, 976–982. [Google Scholar] [CrossRef]
- Akhmedov, A.K.; Murliev, E.K.; Asvarov, A.S.; Muslimov, A.E.; Kanevsky, V.M. Transparent Conductive Indium Zinc Oxide Films: Temperature and Oxygen Dependences of the Electrical and Optical Properties. Coatings 2022, 12, 1583. [Google Scholar] [CrossRef]
- Hosono, H. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids 2006, 352, 851–858. [Google Scholar] [CrossRef]
- Gossard, A.C.; Pinczuk, A. 6—Modulation-doped semiconductors. In Synthetic Modulated Structures; Chang, L.L., Giessen, B.C., Eds.; Academic Press: New York, NY, USA, 1985; pp. 215–255. [Google Scholar] [CrossRef]
- Akhmedov, A.K.; Asvarov, A.S.; Muslimov, A.E.; Kanevsky, V.M. A Multi-Position Drum-Type Assembly for Simultaneous Film Deposition at Different Temperatures in a Single Sputter Cycle–Application to ITO Thin Films. Coatings 2020, 10, 1076. [Google Scholar] [CrossRef]
- Test Methods for Measuring Resistivity and Hall Coefficient and Determining Hall Mobility in Single-Crystal Semiconductors. In ASTM Designation F76, Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2011; Volume 10.04. [CrossRef]
- Haacke, G. New figure of merit for transparent conductors. J. Appl. Phys. 1976, 47, 4086. [Google Scholar] [CrossRef]
- Li, Y.L.; Lee, D.Y.; Min, S.R.; Cho, H.N.; Kim, J.; Chung, C.W. Effect of Oxygen Concentration on Properties of Indium Zinc Oxide Thin Films for Flexible Dye-Sensitized Solar Cell. Jpn. J. Appl. Phys. 2008, 47, 6896. [Google Scholar] [CrossRef]
- Hong, J.S.; Kim, S.M.; Park, S.J.; Choi, H.W.; Kim, K.H. Preparation of In2O3-ZnO (IZO) Thin Film on Glass Substrate for Organic Light Emitting Device (OLED). Mol. Cryst. Liq. Cryst. 2010, 520, 19–27. [Google Scholar] [CrossRef]
- Li, G.F.; Zhou, J.; Huang, Y.W.; Yang, M.; Feng, J.H.; Zhang, Q. Indium zinc oxide semiconductor thin films deposited by dc magnetron sputtering at room temperature. Vacuum 2010, 85, 22–25. [Google Scholar] [CrossRef]
- Leenheer, A.J.; Perkins, J.D.; van Hest, M.F.A.M.; Berry, J.J.; O’Hayre, R.P.; Ginley, D.S. General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films. Phys. Rev. B 2008, 77, 115215. [Google Scholar] [CrossRef]
- Basyooni, M.A.; Shaban, M.; El Sayed, A.M. Enhanced Gas Sensing Properties of Spin-coated Na-doped ZnO Nanostructured Films. Sci. Rep. 2017, 7, 41716. [Google Scholar] [CrossRef] [PubMed]
- Birgin, E.G.; Chambouleyron, I.; Martınez, J.M. Estimation of the optical constants and the thickness of thin films using unconstrained optimization. J. Comput. Phys. 1999, 151, 862–880. [Google Scholar] [CrossRef]
- Kim, H.-M.; Bae, K.; Sohn, S. Electronic and Optical Properties of Indium Zinc Oxide Thin Films Prepared by Using Nanopowder Target. Jpn. J. Appl. Phys. 2011, 50, 045801. [Google Scholar] [CrossRef]
- Martins, R.; Almeida, P.; Barquinha, P.; Pereira, L.; Pimentel, A.; Ferreira, I.; Fortunato, E. Electron transport and optical characteristics in amorphous indium zinc oxide films. J. Non-Cryst. Solids 2006, 352, 1471–1474. [Google Scholar] [CrossRef]
Type of IZO Thin-Film Structure | Sheet Resistance R, Ω/sq | Average Transmittance
, % | FOM, Ω–1 |
---|---|---|---|
Homogeneous n-IZO film | 8.38 | 79.1 | 1.14 × 10–2 |
Homogeneous µ-IZO film | 13.88 | 84.2 | 1.29 × 10–2 |
N × [n-IZO2 nm/μ-IZO2 nm] ML | 8.13 | 84.5 | 2.28 × 10–2 |
N × [n-IZO4 nm/μ-IZO2 nm] ML | 7.25 | 83.8 | 2.36 × 10–2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmedov, A.K.; Abduev, A.K.; Murliev, E.K.; Belyaev, V.V.; Asvarov, A.S. Transparent Conducting Amorphous IZO Thin Films: An Approach to Improve the Transparent Electrode Quality. Materials 2023, 16, 3740. https://doi.org/10.3390/ma16103740
Akhmedov AK, Abduev AK, Murliev EK, Belyaev VV, Asvarov AS. Transparent Conducting Amorphous IZO Thin Films: An Approach to Improve the Transparent Electrode Quality. Materials. 2023; 16(10):3740. https://doi.org/10.3390/ma16103740
Chicago/Turabian StyleAkhmedov, Akhmed K., Aslan Kh. Abduev, Eldar K. Murliev, Victor V. Belyaev, and Abil Sh. Asvarov. 2023. "Transparent Conducting Amorphous IZO Thin Films: An Approach to Improve the Transparent Electrode Quality" Materials 16, no. 10: 3740. https://doi.org/10.3390/ma16103740
APA StyleAkhmedov, A. K., Abduev, A. K., Murliev, E. K., Belyaev, V. V., & Asvarov, A. S. (2023). Transparent Conducting Amorphous IZO Thin Films: An Approach to Improve the Transparent Electrode Quality. Materials, 16(10), 3740. https://doi.org/10.3390/ma16103740