Optimization of Friction Stir Spot Welding Process Using Bonding Criterion and Artificial Neural Network
Abstract
:1. Introduction
2. Methods
2.1. Experiments
2.2. Finite Element Analysis (FEA)
2.3. Bonding Criterion
2.4. Artificial Neural Network (ANN)
3. Results and Discussion
3.1. Experiments
3.2. FEA
3.3. Bonding Criterion
3.4. ANN
4. Conclusions
- In the FSSW process, the pressure-time-flow criterion is more appropriate than the pressure-time criterion.
- In the FSSW process using the pressure-time-flow criterion, it is possible to know whether bonding has occurred without a separate preliminary experiment.
- Among the FSSW process parameters (RS, PD, DT), RS has the greatest effect on both the bonding strength and hardness.
- When process parameters were optimized using ANN, the values were 1178.276 rpm for RS, 7.490 s for DT, and 2.402 mm for PD. The experimental value of the bonding strength was 4.0 kN and the predicted value was 4.147 kN, resulting in an error of 3.675%, while the hardness had an error of 3.197% (with an experimental value of 62 Hv and predicted value of 60.018 Hv).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merklein, M.; Johannes, M.; Lechner, M.; Kuppert, A. A review on tailored blanks—Production, applications and evaluation. J. Mater. Process. Technol. 2014, 214, 151–164. [Google Scholar] [CrossRef]
- Stasik, M.C.; Wagoner, R.H. Forming of tailor-welded aluminum blanks. Int. J. Form. Process. 1998, 1, 9–33. [Google Scholar]
- Tamadon, A.; Pons, D.J.; Sued, K.; Clucas, D. Internal flow behaviour and microstructural evolution of the bobbin-fsw Welds: Thermomechanical comparison between 1xxx and 3xxx aluminium grades. Adv. Mater. Sci. 2021, 21, 40–64. [Google Scholar] [CrossRef]
- Jo, D.S.; Moon, Y.H.; Kim, J.H. Upper bound analysis of friction stir spot welding of 6061-T6 aluminum alloys. Int. J. Adv. Manuf. Technol. 2022, 120, 8311–8320. [Google Scholar] [CrossRef]
- Xiong, J.; Peng, X.; Shi, J.; Wang, Y.; Sun, J.; Liu, X.; Li, J. Numerical simulation of thermal cycle and void closing during friction stir spot welding of AA-2524 at different rotational speeds. Mater. Charact. 2021, 174, 110984. [Google Scholar] [CrossRef]
- Chu, Q.; Yang, X.; Li, W.; Vairis, A.; Wang, W. Numerical analysis of material flow in the probeless friction stir spot welding based on Coupled Eulerian-Lagrangian approach. J. Manuf. Process. 2018, 36, 181–187. [Google Scholar] [CrossRef]
- El-Sayed, M.; Shash, A.; Abd-Rabou, M.; ElSherbiny, M. Welding and processing of metallic materials by using friction stir technique: A review. J. Adv. Join. Process. 2021, 3, 100059. [Google Scholar] [CrossRef]
- Donati, L.; Tomesani, L. The prediction of seam welds quality in aluminum extrusion. J. Mater. Process. Technol. 2004, 153–154, 366–373. [Google Scholar] [CrossRef]
- Donati, L. Evaluation of a new finite element method (FEM) criterion for seam welds quality prediction in aluminum extruded profiles. Proc. Eighth Int. Alum. Extrus. Technol. Semin. 2004, 2, 221–235. [Google Scholar]
- Donati, L.; Tomesani, L. The effect of die design on the production and seam weld quality of extruded aluminum profiles. J. Mater. Process. Technol. 2005, 164–165, 1025–1031. [Google Scholar] [CrossRef]
- Buffa, G.; Donati, L.; Frantini, L.; Tomesani, L. Solid state bonding in extrusion and FSW: Process mechanics and analogies. J. Mater. Process. Technol. 2006, 177, 344–347. [Google Scholar] [CrossRef]
- Buffa, G.; Pellegrino, S.; Fratini, L. Analytical bonding criteria for joint integrity prediction in friction stir welding of aluminum alloys. J. Mater. Process. Technol. 2014, 214, 2102–2111. [Google Scholar] [CrossRef]
- Nejad, R.M.; Sina, N.; Moghadam, D.G.; Branco, R.; Macek, W.; Berto, F. Artificial neural network-based fatigue life assessment of friction stir welding AA2024-T351 aluminum alloy and multi-objective optimization of welding parameters. Int. J. Fatigue 2022, 160, 106840. [Google Scholar] [CrossRef]
- Kahhal, P.; Ghasemi, M.; Kashfi, M.; Ghorbani-Menghari, H.; Kim, J.H. A multi-objective optimization using response surface model coupled with particle swarm algorithm on FSW process parameters. Sci. Rep. 2022, 12, 2837. [Google Scholar] [CrossRef]
- Ramesh, R. Effects of welding process conditions on friction stir welding of polymer composites: A review. Compos. Part C Open Access 2022, 8, 100269. [Google Scholar]
- Jo, D.S.; Kim, J.H.; Kim, B.M. Feasibility study on application of hot forming quenching to patchwork blanks using two-stage refilled friction stir spot welding. J. Manuf. Process. 2019, 41, 66–73. [Google Scholar] [CrossRef]
- ASM International: ASM Aerospace Specification Metals Inc. Aluminum 6061-T6; 6061-T651 [Internet]. c1913-2017. Americal Society of Materials: Materials Park, OH, USA. Available online: http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061t6 (accessed on 6 November 2014).
- Shang, B.; Yin, Z.; Wang, G.; Liu, B.; Huang, Z. Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy. Mater. Des. 2011, 32, 3818–3822. [Google Scholar] [CrossRef]
- Biao, Z.; Xin, C.; Kaixuan, P.; Ming, L.; Jianing, W. Thermo-mechanical simulation using microstructure-based modeling of friction stir spot welded AA6061-T6. J. Manuf. Process. 2019, 37, 71–81. [Google Scholar]
- Suyang, L.; Jianbo, S.; Feng, D.; Shixiong, W.; Wanglin, C.; Chengyong, W. Optimization of Milling Aluminum Alloy 6061-T6 using Modified Johnson-Cook Model. Simul. Model. Pract. Theory 2021, 111, 102330. [Google Scholar]
- Johnson, G.R.; Holmquist, T.J. Test Data and Computational Strength and Fracture Model Constants for 23 Materials Subjected to Large Strains, High Strain Rates, and High Temperatures; Los Alamos National Laboratory: Los Alamos, NM, USA, 1989. [Google Scholar]
- Van den Boogaard, A.; Huétink, J. Simulation of aluminum sheet forming at elevated temperatures. Comput. Methods Appl. Mech. Eng. 2006, 195, 6691–6709. [Google Scholar] [CrossRef]
- Ceretti, E.; Mazzoni, L.; Gagliardi, F.; Giardini, C. A new approach to study material bonding in extrusion porthole dies. CIRP Ann.-Manuf. Technol. 2009, 58, 259–262. [Google Scholar] [CrossRef]
- Plata, M.; Piwnik, J. Theoretical and experimental analysis of seam weld formation in hot extrusion of aluminum alloys. In Proceedings of the 7th International Aluminum Extrusion Technology Seminar, Chicago, IL, USA, 16–19 May 2000; Volume 1, pp. 205–211. [Google Scholar]
- Kim, J.H. Prediction of Weldment Property and Formability for Friction Stir Welded AA6061 Sheet and Its Application to Automotive Part. Ph.D. Thesis, School of Mechanical Engineering, The Graduate School of Pusan National University, Busan, Republic of Korea, 2019. [Google Scholar]
- Rahimi, I.; Gandomi, A.H.; Deb, K.; Chen, F.; Nikoo, M.R. Scheduling by NSGA-I: Review and Bibliometric Analysis. Processes 2022, 10, 98. [Google Scholar] [CrossRef]
- Asmare, A.; Al-Sabur, R.; Messele, E. Experimental Investigation of Friction Stir Welding on 6061-T6 Aluminum Alloy using Taguchi-Based GRA. Metals 2020, 10, 1480. [Google Scholar] [CrossRef]
Mechanical Property | Value |
---|---|
Young’s modulus | 68.9 GPa |
Poisson’s ratio | 0.33 |
Tensile yield stress | 276 MPa |
Ultimate tensile strength | 310 MPa |
Vickers hardness | 107 Hv |
Tool Rotational Speed (rpm) | Dwell Time (s) | Plunging Depth (mm) |
---|---|---|
800 | 6 | 2.2 |
1000 | 8 | 2.4 |
1200 | 10 | 2.6 |
Parameters | Value | Reference | |
---|---|---|---|
Young’s modulus (GPa) | 69 | [16] | |
Poisson’s ratio (ν) | 0.33 | [16] | |
Thermal expansion (1/°C) | 2.8 × 10−5 | [16] | |
Thermal conductivity (W/m·K) | 1180 (at 20 °C) 225 (at 600 °C) | [16] | |
Friction coefficient (μ) | 0.06 (600 °C) | [19] | |
0.3 (100 °C) | [20] | ||
Convective heat transfer coef., hconv (W/m2·K) | 20 | [16] | |
Interface heat transfer coef., hinter (W/m2·K) | 3500 (at pressure 2 MPa) 8000 (at pressure 8 MPa) | [16] | |
Johnson–Cook parameters | A | 324.1 | [18] |
B | 113.8 | ||
C | 0.002 | ||
m | 1.34 | ||
n | 0.42 | ||
D1 | −0.77 | ||
D2 | 1.45 | ||
D3 | −0.47 | ||
D4 | 0.0 | ||
D5 | 1.6 | ||
Specific heat (J/kg·°C) | 925 (at 20 °C) 1233 (at 600 °C) | [16] |
No. | RS (RPM) | DT (s) | PD (mm) | Parameter (s) | Parameter (mm) | Hardness (Hv) | Bonding Strength (kN) | Average Temperature (°C) |
---|---|---|---|---|---|---|---|---|
1 | 800 | 6 | 2.2 | 2.34 | 0.94 | X | X | 337.8 |
2 | 800 | 6 | 2.4 | 2.48 | 1.00 | X | X | 338.4 |
3 | 800 | 6 | 2.6 | 2.39 | 0.96 | X | X | 342.5 |
4 | 800 | 8 | 2.2 | 3.68 | 1.07 | X | X | 346.7 |
5 | 800 | 8 | 2.4 | 3.89 | 1.62 | 85 | 2.3 | 357.8 |
6 | 800 | 8 | 2.6 | 3.83 | 1.59 | 80 | 2.7 | 352.3 |
7 | 800 | 10 | 2.2 | 3.72 | 1.51 | 86 | 2.5 | 361.2 |
8 | 800 | 10 | 2.4 | 3.79 | 1.54 | 85 | 2.8 | 356.2 |
9 | 800 | 10 | 2.6 | 3.73 | 1.51 | 75 | 3.2 | 353.3 |
10 | 1000 | 6 | 2.2 | 4.35 | 0.62 | X | X | 376.8 |
11 | 1000 | 6 | 2.4 | 4.56 | 1.32 | 72 | 2.9 | 391.0 |
12 | 1000 | 6 | 2.6 | 4.49 | 1.30 | 70 | 3.3 | 382.2 |
13 | 1000 | 8 | 2.2 | 4.67 | 1.37 | 75 | 3.0 | 402.3 |
14 | 1000 | 8 | 2.4 | 4.82 | 1.43 | 70 | 3.2 | 422.1 |
15 | 1000 | 8 | 2.6 | 4.76 | 1.40 | 68 | 3.5 | 418.3 |
16 | 1000 | 10 | 2.2 | 4.64 | 1.36 | 70 | 3.1 | 431.1 |
17 | 1000 | 10 | 2.4 | 4.71 | 1.48 | 67 | 3.3 | 408.6 |
18 | 1000 | 10 | 2.6 | 4.69 | 1.48 | 65 | 3.7 | 392.8 |
19 | 1200 | 6 | 2.2 | 3.45 | 0.88 | 68 | 3.7 | 401.1 |
20 | 1200 | 6 | 2.4 | 3.74 | 1.00 | 60 | 4.0 | 406.7 |
21 | 1200 | 6 | 2.6 | 3.55 | 0.92 | 57 | 4.1 | 422.2 |
22 | 1200 | 8 | 2.2 | 3.68 | 0.97 | 62 | 4.0 | 438.7 |
23 | 1200 | 8 | 2.4 | 3.94 | 1.08 | 55 | 4.2 | 439.2 |
24 | 1200 | 8 | 2.6 | 3.75 | 1.00 | 52 | 3.7 | 445.6 |
25 | 1200 | 10 | 2.2 | 3.54 | 0.92 | 58 | 3.5 | 438.8 |
26 | 1200 | 10 | 2.4 | 3.76 | 1.00 | 53 | 4.1 | 445.8 |
27 | 1200 | 10 | 2.6 | 3.62 | 0.95 | 50 | 3.2 | 421.0 |
Objective | Hardness | Bonding Strength |
---|---|---|
Neurons in the input layer | 3 | 3 |
Number of hidden layers | 1 | 1 |
Neurons in the hidden layer | 4 | 4 |
Neurons in the out layer | 1 | 1 |
Training algorithm | Levenberg–Marquardt Back-Propagation | Levenberg–Marquardt Back-Propagation |
Activation function (Hidden layer) | Tansig | Tansig |
Activation function (Output layer) | Purelin | Purelin |
Validation data fraction (%) | 15 | 15 |
Test data fraction (%) | 15 | 15 |
Objective | Mean Square Error (MSE) | Root Mean Square Error (RMSE) | R |
---|---|---|---|
Hardness | 1.159929 | 1.077 | 0.997 |
Bonding Strength | 0.005329 | 0.073 | 0.997 |
Parameter/Objective | ANN Optimum |
---|---|
RS (rpm) | 1178.276 |
DT (s) | 7.490 |
PD (mm) | 2.402 |
Hardness (Predicted) | 60.018 |
Hardness (Experiment) | 62.000 |
Bonding strength (Predicted) | 4.147 |
Bonding strength (Experiment) | 4.000 |
Relative error (Hardness) | 3.197% |
Relative error (Bonding strength) | 3.675% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, D.S.; Kahhal, P.; Kim, J.H. Optimization of Friction Stir Spot Welding Process Using Bonding Criterion and Artificial Neural Network. Materials 2023, 16, 3757. https://doi.org/10.3390/ma16103757
Jo DS, Kahhal P, Kim JH. Optimization of Friction Stir Spot Welding Process Using Bonding Criterion and Artificial Neural Network. Materials. 2023; 16(10):3757. https://doi.org/10.3390/ma16103757
Chicago/Turabian StyleJo, Deok Sang, Parviz Kahhal, and Ji Hoon Kim. 2023. "Optimization of Friction Stir Spot Welding Process Using Bonding Criterion and Artificial Neural Network" Materials 16, no. 10: 3757. https://doi.org/10.3390/ma16103757
APA StyleJo, D. S., Kahhal, P., & Kim, J. H. (2023). Optimization of Friction Stir Spot Welding Process Using Bonding Criterion and Artificial Neural Network. Materials, 16(10), 3757. https://doi.org/10.3390/ma16103757