Study on the Effect of Inter-Layer Cooling Time on Porosity and Melt Pool in Inconel 718 Components Processed by Laser Powder Bed Fusion
Abstract
:1. Introduction
2. Materials and Methods
- Investigation of ILCT’s variation effect on the material microstructure.
- Evaluation of obstructing heat flux geometries on critical ILCT values.
2.1. Study of ILCT’s Variation Effect on Material Microstructure
- -
- A porosity analysis was performed to estimate the densification level and the presence of defects in the material. This analysis was performed using a Leica Leitz DMRME (Leica Microsystems GmbH, Wetzlar, Germany) optical microscope, and the percent porosity was evaluated by analyzing six fields for each specimen. Then, the acquired images were post-processed using ImageJ 1.53 (National Institute of Health, Bethesda, MD, USA) software. In order to measure the porosity percentage, a thresholding image processing was applied to the acquired images.
- -
- A melt pool analysis was performed on the specimens using the Leica Leitz DMRME (Leica Microsystems GmbH, Wetzlar, Germany), and then a chemical etching with oxalic acid was carried out to highlight the melt pool boundaries. For each analyzed configuration, five random single tracks were measured in terms of melt pool width and depth [52].
2.2. Effect of Obstructing Heat Flux Geometries on Material Microstructure for Critical ILCT
3. Results
3.1. ILCT’s Variation Effect on Material Microstructure
3.2. Effect of Geometries Obstructing Heat Flux on Material Microstructure
4. Discussion
4.1. Effect of ILCT Variation on Material Microstructure
4.2. Effect of Geometries Obstructing Heat Flux on Material Microstructure
- -
- An effect of mitigation of porosity level and reduction of melt pool depth is observed as the surface-to-volume ratio decreases, keeping the printed area for low ILCTs constant. This is evident when comparing the porosity level and melt pool depth measured for specimen number 6 (Table 6 and Table 8) and specimen number 1 (Table 9 and Table 11).
- -
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Guan, K.; Gao, M.; Li, X.; Chen, X.; Zeng, X. The microstructure and mechanical properties of deposited-IN718 by selective laser melting. J. Alloys Compd. 2014, 513, 518–523. [Google Scholar] [CrossRef]
- Das, S. Physical Aspects of Process Control in Selective Laser Sintering of Metals. Adv. Eng. Mater. 2003, 5, 701–711. [Google Scholar] [CrossRef]
- Osakada, K.; Shiomi, M. Flexible manufacturing of metallic products by selective laser melting of powder. Int. J. Mach. Tools Manuf. 2006, 46, 1188–1193. [Google Scholar] [CrossRef]
- Kruth, J.-P.; Mercelis, P.; Van Vaerenbergh, J.; Froyen, L.; Rombouts, M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2005, 11, 26–36. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Gusarov, A.; Yadroitsava, I.; Smurov, I. Single track formation in selective laser melting of metal powders. J. Mater. Process. Technol. 2010, 210, 1624–1631. [Google Scholar] [CrossRef]
- Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of ceramic components: Materials, processes, and mechanisms. Laser Addit. Manuf. Mater. Des. Technol. Appl. 2016, 6608, 163–180. [Google Scholar] [CrossRef]
- Smith, J.; Xiong, W.; Yan, W.; Lin, S.; Cheng, P.; Kafka, O.; Wagner, G.J.; Cao, J.; Liu, W.K. Linking process, structure, property, and performance for metal-based additive manufacturing: Computational approaches with experimental support. Comput. Mech. 2016, 57, 583–610. [Google Scholar] [CrossRef]
- Jo, A.R.; An, J.S.; Kim, S.H.; Park, D.Y.; Moon, Y.H.; Hwang, S.K. Optimal Process Conditions for Powder Bed Fusion and Analysis of Properties of Maraging Steel. Met. Mater. Int. 2023, 1–13. [Google Scholar] [CrossRef]
- Majeed, A.; Ahmed, A.; Lv, J.; Peng, T.; Muzamil, M. A state-of-the-art review on energy consumption and quality characteristics in metal additive manufacturing processes. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 249. [Google Scholar] [CrossRef]
- Ciappi, A.; Giorgetti, A.; Ceccanti, F.; Canegallo, G. Technological and economical consideration for turbine blade tip restoration through metal deposition technologies. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 1741–1758. [Google Scholar] [CrossRef]
- Metelkova, J.; Kinds, Y.; Kempen, K.; de Formanoir, C.; Witvrouw, A.; Van Hooreweder, B. On the influence of laser defocusing in Selective Laser Melting of 316L. Addit. Manuf. 2018, 23, 161–169. [Google Scholar] [CrossRef]
- Zhang, Y.; Majeed, A.; Muzamil, M.; Lv, J.; Peng, T.; Patel, V. Investigation for macro mechanical behavior explicitly for thin-walled parts of AlSi10Mg alloy using selective laser melting technique. J. Manuf. Process. 2021, 66, 269–280. [Google Scholar] [CrossRef]
- Singh, S.N.; Chowdhury, S.; Nirsanametla, Y.; Deepati, A.K.; Prakash, C.; Singh, S.; Wu, L.Y.; Zheng, H.Y.; Pruncu, C. A Comparative Analysis of Laser Additive Manufacturing of High Layer Thickness Pure Ti and Inconel 718 Alloy Materials Using Finite Element Method. Materials 2021, 14, 876. [Google Scholar] [CrossRef] [PubMed]
- Tangestani, R.; Sabiston, T.; Chakraborty, A.; Muhammad, W.; Yuan, L.; Martin, E. An Efficient Track-Scale Model for Laser Powder Bed Fusion Additive Manufacturing: Part 1—Thermal Model. Front. Mater. 2021, 8, 753040. [Google Scholar] [CrossRef]
- Leicht, A.; Fischer, M.; Klement, U.; Nyborg, L.; Hryha, E. Increasing the Productivity of Laser Powder Bed Fusion for Stainless Steel 316L through Increased Layer Thickness. J. Mater. Eng. Perform. 2021, 30, 575–584. [Google Scholar] [CrossRef]
- de Formanoir, C.; Paggi, U.; Colebrants, T.; Thijs, L.; Li, G.; Vanmeensel, K.; Van Hooreweder, B. Increasing the productivity of laser powder bed fusion: Influence of the hull-bulk strategy on part quality, microstructure and mechanical performance of Ti-6Al-4V. Addit. Manuf. 2020, 33, 101129. [Google Scholar] [CrossRef]
- Oliveira, J.P.; LaLonde, A.D.; Ma, J. Processing parameters in laser powder bed fusion metal additive manufacturing. Mater. Des. 2020, 193, 108762. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Santos, T.G.; Miranda, R.M. Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice. Prog. Mater. Sci. 2020, 107, 100590. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, Y.; Wen, W.; Ge, J.; Liang, J. Effect of Hatch Spacing on Melt Pool and As-built Quality During Selective Laser Melting of Stainless Steel: Modeling and Experimental Approaches. Materials 2019, 12, 50. [Google Scholar] [CrossRef]
- Masoomi, M.; Thompson, S.M.; Shamsaei, N. Quality part production via multi-laser additive manufacturing. Manuf. Lett. 2017, 13, 15–20. [Google Scholar] [CrossRef]
- Williams, R.J.; Piglione, A.; Rønneberg, T.; Jones, C.; Pham, M.-S.; Davies, C.M.; Hooper, P.A. In situ thermography for laser powder bed fusion: Effects of layer temperature on porosity, microstructure and mechanical properties. Addit. Manuf. 2019, 30, 100880. [Google Scholar] [CrossRef]
- Guévenoux, C.; Hallais, S.; Charles, A.; Charkaluk, E.; Constantinescu, A. Influence of interlayer dwell time on the microstructure of Inconel 718 Laser Cladded components. Opt. Laser Technol. 2020, 128, 106218. [Google Scholar] [CrossRef]
- Mohr, G.; Scheuschner, N.; Hilgenberg, K. In situ heat accumulation by geometrical features obstructing heat flux and by reduced inter layer times in laser powder bed fusion of AISI 316L stainless steel. Procedia CIRP 2020, 94, 155–160. [Google Scholar] [CrossRef]
- King, W.E.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A.; Rubenchik, A.M. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl. Phys. Rev. 2015, 2, 041304. [Google Scholar] [CrossRef]
- Farshidianfar, M.H.; Khajepour, A.; Gerlich, A. Real-time control of microstructure in laser additive manufacturing. Int. J. Adv. Manuf. Technol. 2016, 82, 1173–1186. [Google Scholar] [CrossRef]
- Ma, M.; Wang, Z.; Zeng, X. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition. Mater. Sci. Eng. A 2017, 685, 265–273. [Google Scholar] [CrossRef]
- Wang, Y.M.; Voisin, T.; McKeown, J.; Ye, J.; Calta, N.; Li, Z.; Zeng, Z.; Zhang, Y.; Chen, W.; Roehling, T.T.; et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 2017, 17, 63–71. [Google Scholar] [CrossRef]
- Joo, H.M.; Kim, W.C.; Kim, Y.J.; Jo, Y.C.; Kang, M.G.; Lee, J.Y.; Kim, M.S.; Kim, G.B.; Kim, S.J.; Kim, D.H. Effect of Laser Power on the Microstructure Evolution and Mechanical Properties of 20MnCr5 Low Alloy Steel Produced by Laser-Based Powder Bed Fusion. Met. Mater. Int. 2023, 29, 983–993. [Google Scholar] [CrossRef]
- Javidrad, H.R.; Salemi, S. Effect of the Volume Energy Density and Heat Treatment on the Defect, Microstructure, and Hardness of L-PBF Inconel 625. Met. Mater. Trans. A 2020, 51, 5880–5891. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, Y.; Strayer, S.; Zhao, Y.; Aoyagi, K.; Koizumi, Y.; Chiba, A.; Xiong, W.; To, A.C. Elucidating the effect of preheating temperature on melt pool morphology variation in Inconel 718 laser powder bed fusion via simulation and experiment. Addit. Manuf. 2021, 37, 101642. [Google Scholar] [CrossRef]
- Ceccanti, F.; Giorgetti, A.; Citti, P. A Support Structure Design Strategy for Laser Powder Bed Fused Parts. Procedia Struct. Integr. 2019, 24, 667–679. [Google Scholar] [CrossRef]
- Chen, C.; Xiao, Z.; Wang, Y.; Yang, X.; Zhu, H. Prediction study on in-situ reduction of thermal stress using combined laser beams in laser powder bed fusion. Addit. Manuf. 2021, 47, 102221. [Google Scholar] [CrossRef]
- Hassinie, N.; Chatti, S.; Kolsi, L. Sensitivity of Melt Pool Size and Porosity Appearing to Base Plate Preheating in Laser Powder Bed Fusion Process. Ann. Dunarea Jos Univ. Galati. Fascicle XII Weld. Equip. Technol. 2022, 33, 112–116. [Google Scholar] [CrossRef]
- Ninpetch, P.; Chalermkarnnon, P.; Kowitwarangkul, P. Multiphysics Simulation of Thermal-Fluid Behavior in Laser Powder Bed Fusion of H13 Steel: Influence of Layer Thickness and Energy Input. Met. Mater. Int. 2023, 29, 536–551. [Google Scholar] [CrossRef]
- Olleak, A.; Xi, Z. A study of modeling assumptions and adaptive remeshing for thermomechanical finite element modeling of the LPBF process. Int. J. Adv. Manuf. Technol. 2021, 115, 3599–3615. [Google Scholar] [CrossRef]
- Stegman, B.; Shang, A.; Hoppenrath, L.; Raj, A.; Abdel-Khalik, H.; Sutherland, J.; Schick, D.; Morgan, V.; Jackson, K.; Zhang, X. Volumetric energy density impact on mechanical properties of additively manufactured 718 Ni alloy. Mater. Sci. Eng. A 2022, 854, 143699. [Google Scholar] [CrossRef]
- Wang, Q.; Michaleris, P.; Pantano, M.; Li, C.; Ren, Y.; Nassar, A.R. Part-scale thermal evolution and post-process distortion of Inconel-718 builds fabricated by laser powder bed fusion. J. Manuf. Process. 2022, 81, 865–880. [Google Scholar] [CrossRef]
- Yao, D.; Wang, J.; Luo, H.; Wu, Y.; An, X. Thermal behavior and control during multi-track laser powder bed fusion of 316 L stainless steel. Addit. Manuf. 2023, 70, 103562. [Google Scholar] [CrossRef]
- Lui, E.W.; Xu, W.; Pateras, A.; Qian, M.; Brandt, M. New Development in Selective Laser Melting of Ti–6Al–4V: A Wider Processing Window for the Achievement of Fully Lamellar α + β Microstructures. JOM 2017, 69, 2679–2683. [Google Scholar] [CrossRef]
- Xu, W.; Lui, E.W.; Pateras, A.; Qian, M.; Brandt, M. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater. 2017, 125, 390–400. [Google Scholar] [CrossRef]
- Yadollahi, A.; Shamsaei, N.; Thompson, S.M.; Elwany, A.; Bian, L. Mechanical and Microstructural Properties of Selective Laser Melted 17-4 PH Stainless Steel, Volume 2A: Advanced Manufacturing. ASME Int. Mech. Eng. Congr. Expo. 2015, 57359, V02AT02A014. [Google Scholar]
- Denlinger, E.R.; Heigel, J.C.; Michaleris, P.; Palmer, T. Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys. J. Mater. Process. Technol. 2015, 215, 123–131. [Google Scholar] [CrossRef]
- Bandari, Y.K.; Lee, Y.; Nandwana, P.; Richardson, B.S.; Adediran, A.I.; Love, L.J.; Gaul, K.T. Effect of inter-layer cooling time on distortion and mechanical properties in metal additive manufacturing. In Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium (SFF)—An Additive Manufacturing Conference, Austin, TX, USA, 13–15 August 2018; pp. 425–437. [Google Scholar]
- Yadollahi, A.; Shamsaei, N. Additive manufacturing of fatigue resistant materials: Challenges and opportunities. Int. J. Fatigue 2017, 98, 14–31. [Google Scholar] [CrossRef]
- Li, S.; Xiao, H.; Liu, K.; Xiao, W.; Li, Y.; Han, X.; Mazumder, J.; Song, L. Melt-pool motion, temperature variation and dendritic morphology of Inconel 718 during pulsed- and continuous-wave laser additive manufacturing: A comparative study. Mater. Des. 2017, 119, 351–360. [Google Scholar] [CrossRef]
- Johnson, L.; Mahmoudi, M.; Zhang, B.; Seede, R.; Huang, X.; Maier, J.T.; Maier, H.J.; Karaman, I.; Elwany, A.; Arróyave, R. Assessing printability maps in additive manufacturing of metal alloys. Acta Mater. 2019, 176, 199–210. [Google Scholar] [CrossRef]
- Carrozza, A.; Mazzucato, F.; Aversa, A.; Lombardi, M.; Bondioli, F.; Biamino, S.; Valente, A.; Fino, P. Single Scans of Ti-6Al-4V by Directed Energy Deposition: A Cost and Time Effective Methodology to Assess the Proper Process Window. Met. Mater. Int. 2021, 27, 3590–3602. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Y.; Xie, Y.; Yang, S.; Hou, R.; Ge, Y.; Lang, L.; Gong, S.; Li, H. Observation of Vapor Plume Behavior and Process Stability at Single-Track and Multi-Track Levels in Laser Powder Bed Fusion Regime. Metals 2021, 11, 937. [Google Scholar] [CrossRef]
- King, W.E.; Barth, H.D.; Castillo, V.M.; Gallegos, G.F.; Gibbs, J.W.; Hahn, D.E.; Kamath, C.; Rubenchik, A.M. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 2014, 214, 2915–2925. [Google Scholar] [CrossRef]
- Gong, H.; Gu, H.; Zeng, K.; Dilip, J.J.S.; Pal, D.; Stucker, B. Melt Pool characterization for selective laser melting of Ti-6Al-4V pre-alloyed, Solid Free. In Proceedings of the 2014 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 4–6 August 2014; pp. 256–267. [Google Scholar]
- Li, L. Repair of directionally solidified superalloy GTD-111 by laser-engineered net shaping. J. Mater. Sci. 2006, 41, 7886–7893. [Google Scholar] [CrossRef]
- Giorgetti, A.; Baldi, N.; Palladino, M.; Ceccanti, F.; Arcidiacono, G.; Citti, P. A Method to Optimize Parameters Development in L-PBF Based on Single and Multitracks Analysis: A Case Study on Inconel 718 Alloy. Metals 2023, 13, 306. [Google Scholar] [CrossRef]
- Panwisawas, C.; Gong, Y.; Tang, Y.T.; Reed, R.C.; Shinjo, J. Additive manufacturability of superalloys: Process-induced porosity, cooling rate and metal vapour. Addit. Manuf. 2021, 47, 102339. [Google Scholar] [CrossRef]
- Guo, Y.; Jia, L.; Kong, B.; Wang, N.; Zhang, H. Single track and single layer formation in selective laser melting of niobium solid solution alloy. Chin. J. Aeronaut. 2018, 31, 860–866. [Google Scholar] [CrossRef]
- Childs, T.; Hauser, C.; Badrossamay, M. Mapping and Modelling Single Scan Track Formation in Direct Metal Selective Laser Melting. CIRP Ann. 2004, 53, 191–194. [Google Scholar] [CrossRef]
- Tenbrock, C.; Fischer, F.G.; Wissenbach, K.; Schleifenbaum, J.H.; Wagenblast, P.; Meiners, W.; Wagner, J. Influence of keyhole and conduction mode melting for top-hat shaped beam profiles in laser powder bed fusion. J. Mater. Process. Technol. 2020, 278, 116514. [Google Scholar] [CrossRef]
- Shrestha, S.; Chou, K. Single track scanning experiment in laser powder bed fusion process. Procedia Manuf. 2018, 26, 857–864. [Google Scholar] [CrossRef]
- Altin, A.; Nalbant, M.; Taskesen, A. The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools. Mater. Des. 2007, 28, 2518–2522. [Google Scholar] [CrossRef]
- Watring, D.S.; Carter, K.C.; Crouse, D.; Raeymaekers, B.; Spear, A.D. Mechanisms driving high-cycle fatigue life of as-built Inconel 718 processed by laser powder bed fusion. Mater. Sci. Eng. A 2019, 761, 137993. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Y.; Kasinathan, A.R.; Shahabad, S.I.; Ali, U.; Mahmoodkhani, Y.; Toyserkani, E. 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity. Opt. Laser Technol. 2019, 109, 297–312. [Google Scholar] [CrossRef]
Element | % Weight |
---|---|
C | 0.040 |
Mn | 0.08 |
Si | 0.08 |
P | <0.015 |
S | 0.002 |
Cr | 18.37 |
Ni | 55.37 |
Co | 0.23 |
Mo | 3.04 |
Nb + Ta | 5.34 |
Ti | 0.98 |
Al | 0.5 |
B | 0.004 |
Ta | 0.005 |
Cu | 0.04 |
Fe | 17.80 |
Ca | <0.01 |
Mg | <0.01 |
Pb | 0.0001 |
Bi | 0.0001 |
Se | <0.001 |
Nb | 5.33 |
Elastic Modulus (Gpa) | Yield Strength (Mpa) | Tensile Stress (Mpa) | Strain (%) | Density (kg/m3) | Thermal Conductivity (W/mK) |
---|---|---|---|---|---|
206 | 1100 | 1310 | 23.3 | 8470 | 11.2 |
Laser Power (W) | 390 |
Scanning Speed (mm/s) | 1100 |
Hatch Distance (mm) | 0.09 |
Sample | Sample Code | Radius (mm) | Height (mm) | ILCT Levels (s) |
---|---|---|---|---|
1 | 22H | 10 | 10 | 22 |
2 | 18H | 10 | 20 | 22–18 |
3 | 14H | 10 | 30 | 22–18–14 |
4 | 10H | 10 | 40 | 22–18–14–10 |
5 | 6H | 10 | 50 | 22–18–14–10–6 |
6 | 2H | 10 | 60 | 22–18–14–10–6–2 |
7 | 6C | 10 | 70 | 22–18–14–10–6–2–6 |
8 | 10C | 10 | 80 | 22–18–14–10–6–2–6–10 |
9 | 14C | 10 | 90 | 22–18–14–10–6–2–6–10–14 |
10 | 18C | 10 | 100 | 22–18–14–10–6–2–6–10–14–18 |
11 | 22C | 10 | 110 | 22–18–14–10–6–2–6–10–14–18–22 |
Sample | Rmax (mm) | Rmax − Rmin (mm) | Exposed Area Range (mm2) | Height (mm) |
---|---|---|---|---|
1 | 1.5 | 0.0 | 7.07–7.07 | 10 |
2 | 2.0 | 0.5 | 7.07–12.56 | 20 |
3 | 2.5 | 1.0 | 7.07–19.63 | 30 |
4 | 3.0 | 1.5 | 7.07–28.26 | 40 |
5 | 3.5 | 10 | 7.07–38.46 | 50 |
Sample | Porosity [%] | |
---|---|---|
Avg. | SD | |
1 | 0.021 | 0.019 |
2 | 0.023 | 0.018 |
3 | 0.022 | 0.008 |
4 | 0.025 | 0.011 |
5 | 0.059 | 0.022 |
6 | 0.096 | 0.038 |
7 | 0.067 | 0.024 |
8 | 0.028 | 0.015 |
9 | 0.022 | 0.011 |
10 | 0.021 | 0.009 |
11 | 0.021 | 0.016 |
Sample | Maximum Defect Diameter (µm) |
---|---|
2 | 0.023 |
3 | 0.022 |
4 | 0.025 |
5 | 0.059 |
6 | 0.096 |
7 | 0.067 |
8 | 0.028 |
9 | 0.022 |
10 | 0.021 |
11 | 0.021 |
Sample | Depth (µm) | Width (µm) | Width/Depth Ratio | ||
---|---|---|---|---|---|
Avg. | SD | Avg. | SD | ||
1 | 138.2 | 11.4 | 164.6 | 8.0 | 1.20 |
2 | 142.1 | 9.9 | 165.6 | 7.2 | 1.20 |
3 | 146.5 | 20.5 | 167.4 | 7.9 | 1.16 |
4 | 151.2 | 11.1 | 177.1 | 13.6 | 1.17 |
5 | 153.9 | 5.0 | 172.3 | 11.2 | 1.12 |
6 | 201.7 | 6.1 | 172.2 | 10.4 | 0.88 |
7 | 156.0 | 7.9 | 172.6 | 11.3 | 1.11 |
8 | 152.4 | 12.3 | 171.9 | 9.4 | 1.13 |
9 | 153.1 | 9.4 | 166.2 | 9.3 | 1.09 |
10 | 145.8 | 13.6 | 164.0 | 8.7 | 1.08 |
11 | 146.0 | 10.3 | 160.0 | 15.6 | 1.10 |
Sample | Rmax (mm) | Rmax − Rmin (mm) | Exposed Area Range (mm2) | Porosity (%) | |
---|---|---|---|---|---|
Avg. | SD | ||||
1 | 1.5 | 0.0 | 7.07–7.07 | 0.029 | 0.011 |
2 | 2.0 | 1.5 | 7.07–12.56 | 0.054 | 0.016 |
3 | 2.5 | 1.0 | 7.07–19.63 | 0.113 | 0.044 |
4 | 3.0 | 1.5 | 7.07–28.26 | 0.153 | 0.076 |
5 | 3.5 | 2.0 | 7.07–38.46 | 0.284 | 0.128 |
Sample | Maximum Defect Diameter (µm) |
---|---|
1 | 21.78 |
2 | 34.30 |
3 | 58.58 |
4 | 71.87 |
5 | 96.58 |
Sample | Depth (µm) | Width (µm) | Width/Depth Ratio | ||
---|---|---|---|---|---|
Avg. | SD | Avg. | SD | ||
1 | 120.0 | 3.8 | 153.3 | 5.0 | 1.27 |
2 | 133.6 | 7.4 | 159.5 | 6.1 | 1.20 |
3 | 155.1 | 6.5 | 156.3 | 7.3 | 1.01 |
4 | 190.1 | 6.2 | 167.3 | 8.2 | 0.86 |
5 | 208.4 | 16.6 | 166.5 | 7.7 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldi, N.; Giorgetti, A.; Palladino, M.; Giovannetti, I.; Arcidiacono, G.; Citti, P. Study on the Effect of Inter-Layer Cooling Time on Porosity and Melt Pool in Inconel 718 Components Processed by Laser Powder Bed Fusion. Materials 2023, 16, 3920. https://doi.org/10.3390/ma16113920
Baldi N, Giorgetti A, Palladino M, Giovannetti I, Arcidiacono G, Citti P. Study on the Effect of Inter-Layer Cooling Time on Porosity and Melt Pool in Inconel 718 Components Processed by Laser Powder Bed Fusion. Materials. 2023; 16(11):3920. https://doi.org/10.3390/ma16113920
Chicago/Turabian StyleBaldi, Niccolò, Alessandro Giorgetti, Marco Palladino, Iacopo Giovannetti, Gabriele Arcidiacono, and Paolo Citti. 2023. "Study on the Effect of Inter-Layer Cooling Time on Porosity and Melt Pool in Inconel 718 Components Processed by Laser Powder Bed Fusion" Materials 16, no. 11: 3920. https://doi.org/10.3390/ma16113920
APA StyleBaldi, N., Giorgetti, A., Palladino, M., Giovannetti, I., Arcidiacono, G., & Citti, P. (2023). Study on the Effect of Inter-Layer Cooling Time on Porosity and Melt Pool in Inconel 718 Components Processed by Laser Powder Bed Fusion. Materials, 16(11), 3920. https://doi.org/10.3390/ma16113920