Research on the Spring Creep Based on the Load Simulator of the Double Torsion Spring Steering Gear
Abstract
:1. Introduction
2. Creep Equation and Experimental Method of a Spring at Room Temperature
2.1. Creep Equation of a Spring at Room Temperature
- (1)
- When , n is the strain hardening coefficient, which can be calculated by Equation (10).
- (2)
- When , is the initial Young’s modulus at this stage, that is, the tangent modulus at 0.2% yield strength. Its value can be calculated by Equation (12):
2.2. Spring Material and Size Parameters
2.3. Calculation of Temperature Creep in Spring Chamber
2.4. Experimental Method of Spring Chamber Temperature Creep
3. Experimental Data and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, W.; Sun, L.; Yu, Y.; Zhu, S.; Yan, J. Design and Model-building of Motor-driven Load Simulator with Large Torque Outputs. J. Syst. Simul. 2009, 21, 3596–3598. [Google Scholar]
- Xin, F.; Zhou, X.; Lei, Y.; Zhu, M.; Zhang, Z.; Yang, G. Design and performance analysis of torsion bar-load simulator. J. Proj. Rocket Miss. Guid. 2013, 33, 45–48. [Google Scholar]
- Fan, D.; Guo, Z.; Yang, Z. Design of a Type of Load Simulator. J. Mech. Eng. 2013, 12, 152–154. [Google Scholar]
- Liu, X.; Yuan, K. Controller Design and Simulation for High Load Servo Loading System. Control Eng. China 2014, 21, 210–218. [Google Scholar]
- Shuck, L.Z.; Fogle, J.L. Dynamic micro-torque transducer. Exp. Mech. 1971, 11, 276–279. [Google Scholar] [CrossRef]
- Yao, J.; Jiao, Z.; Shang, Y. Adaptive nonlinear optimal compensation control for electro-hydraulic load simulator. Chin. J. Aeronaut. 2010, 23, 720–733. [Google Scholar]
- Cao, T.; Sun, X.; Ouyang, Q.; Zheng, S. Design of loading stand for reverse operation of navigating machine. J. Beijing Univ. Aeronaut. Astronaut. 2003, 03, 252–254. [Google Scholar]
- Bo, Z.; Cheng, L.; Zhuo, W. Design and experimental study of zero-compensation steering gear load simulator with double torsion springs. Measurement 2019, 148, 106930. [Google Scholar]
- Zhu, Z. Precision elastic element—Study on creep of spiral tension spring at room temperature. Instrum. Manuf. 1979, 02, 33–37. [Google Scholar]
- Alden, T.H. Strain hardening during low temperature creep of 304 stainless steel. Acta Metall. 1987, 35, 2621–2626. [Google Scholar] [CrossRef]
- Oehlert, A.; Atrens, A. Room temperature creep of high strength steels. Acta Metall. Mater. 1994, 42, 1493–1508. [Google Scholar] [CrossRef]
- Alfredsson, B.; Arregui, I.; Lai, J. Low temperature creep in a high strength roller bearing steel. Mech. Mater. 2016, 100, 109–125. [Google Scholar] [CrossRef]
- Barrett, P.; Hassan, T. A unified constitutive model in simulating creep strains in addition to fatigue responses of Haynes 230. Int. J. Solids Struct. 2020, 185, 394–409. [Google Scholar] [CrossRef]
- Milligan, B.; Roy, S. Impact of microstructural stability on the creep behavior of cast Al–Cu alloys. Mater. Sci. Eng. 2020, 772, 138697. [Google Scholar] [CrossRef]
- Hu, J.; Graham, G.; Hogg, S.; Higginson, R.; Cocks, A. Effect of microstructure evolution on the creep properties of a polycrystalline 316H austenitic stainless steel. Mater. Sci. Eng. 2020, 772, 138787. [Google Scholar] [CrossRef]
- Wu, M.; Xiao, Y.; Wang, J.; Yang, W. Study on Creep and Stress Relaxation Behavior of Stainless Steel Springs. Machinery 2023, 61, 50–55. [Google Scholar]
- DelLlano-Vizcaya, L.; Rubio-Gonzalez, C.; Mesmacque, G.; Banderas-Hernandez, A. Stress relief effect on fatigue and relaxation of compression springs. Mater. Des. 2007, 28, 1130–1134. [Google Scholar] [CrossRef]
- Simon, P.A.; Gordon, M.; Andrew, S. Stress relaxation of nickel-based superalloy helical springs at high temperatures. Mater. Sci. Eng. 2014, 613, 117–129. [Google Scholar]
- Salah, R.; Michael, K.; Christian, D. Stress Relaxation Behaviour in IN718 Nickel Based Superalloy during Ageing Heat Treatments. Mater. Sci. Eng. 2017, 708, 563–573. [Google Scholar]
- Zhou, Y.; Wan, M. Investigation on the Degradation of Stress Relaxation of Hyperbolic Wire Spring Connectors. In Proceedings of the 2018 12th International Conference on Reliability, Maintainability, and Safety (ICRMS), Shanghai, China, 17–19 October 2018. [Google Scholar]
- Yuan, M.; Yuan, H.; Xu, R.; Wang, Q. Reliability Assessment of Spring Based on Two Degradation Modeling Methods. In Proceedings of the 2018 12th International Conference on Reliability, Maintainability, and Safety (ICRMS), Shanghai, China, 17–19 October 2018. [Google Scholar]
- Li, J.; Wang, Y.; Chen, X.; Yan, X.; Lu, X. Microstructure evolution in stress relaxation behavior of austenite AISI 304 stainless steel spring. Mater. Charact. 2019, 148, 266–271. [Google Scholar] [CrossRef]
- Nabarro, F. The time constant of logarithmic creep and relaxation. Mater. Sci. Eng. A 2001, 309, 227–228. [Google Scholar] [CrossRef]
- Xiao, F.; Wu, Y.; Zheng, J.; Miao, C.; Zhu, X. A load-holding time prediction method based on creep strain relaxation for the cold-stretching process of S30408 cryogenic pressure vessels. J. Zhejiang Univ. Sci. A. 2017, 18, 871–881. [Google Scholar] [CrossRef]
- Ramberg, W. Description of Stress-Strain Curves by Three Parameters; NACA Technical Notes; NASA: Washington, DC, USA, 1943. [Google Scholar]
- Yue, T.; Yuren, C. Ramberg-Osgood model fitting of tensile stress-strain curve of U71Mn rail steel. Phys. Exam. Test. 1991, 5, 36–41. [Google Scholar]
- Rasmussen, K.J.R. Full-range stress-strain curves for stainless steel alloys. J. Constr. Steel. Res. 2003, 59, 47–61. [Google Scholar] [CrossRef]
- Cheng, L. Research and Creep Mechanism Analysis of Dual Spring Zero Position Compensation Load Table. Master’s Thesis, Harbin Engineering University, Harbin, China, 2020. [Google Scholar]
- Xiao, F. Prediction Method for Room Temperature Creep of Austenitic Stainless Steel and Its Application in Strain Strengthening of Cryogenic Vessels. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2017. [Google Scholar]
- Yang, Z. Engineering Mechanics; Harbin Engineering University Press: Harbin, China, 2010. [Google Scholar]
Elastic modulus/(MPa) | 211,000 |
Poisson’s ratio | 0.288 |
Density/(t/mm3) | |
/(MPa) | 1420 |
/(MPa) | 1136 |
/(MPa) | 639 |
Torsion spring wire diameter/(mm) | 1.8 |
Mean diameter of coil/(mm) | 11 |
Total number of coils | 4 |
) | 120 |
Torsion spring force arm/(mm) | 15 |
Torsion spring pitch/(mm) | 2.5 |
) | 4.14 |
Time (s) | Time (s) | ||
---|---|---|---|
0 | 0 | 7500 | 0.174726 |
60 | 0.011457 | 8400 | 0.177591 |
210 | 0.054423 | 9600 | 0.180455 |
780 | 0.105982 | 12,420 | 0.211963 |
960 | 0.108846 | 12,600 | 0.214828 |
1080 | 0.11171 | 14,700 | 0.218987 |
1800 | 0.114575 | 18,700 | 0.226679 |
2100 | 0.126032 | 21,800 | 0.233096 |
2220 | 0.128897 | 24,900 | 0.245713 |
2280 | 0.131761 | 28,000 | 0.245677 |
3300 | 0.134625 | 32,100 | 0.2519 |
3600 | 0.13749 | 36,120 | 0.264493 |
3900 | 0.140354 | 40,120 | 0.265124 |
5200 | 0.15754 | 44,120 | 0.271456 |
5300 | 0.163269 | 49,000 | 0.277328 |
5340 | 0.166133 | 50,800 | 0.279596 |
5520 | 0.171862 | 54,000 | 0.281319 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Ren, P.; Wang, Z.; Ma, H. Research on the Spring Creep Based on the Load Simulator of the Double Torsion Spring Steering Gear. Materials 2023, 16, 3763. https://doi.org/10.3390/ma16103763
Zhang B, Ren P, Wang Z, Ma H. Research on the Spring Creep Based on the Load Simulator of the Double Torsion Spring Steering Gear. Materials. 2023; 16(10):3763. https://doi.org/10.3390/ma16103763
Chicago/Turabian StyleZhang, Bo, Peijie Ren, Zhuo Wang, and Hongwen Ma. 2023. "Research on the Spring Creep Based on the Load Simulator of the Double Torsion Spring Steering Gear" Materials 16, no. 10: 3763. https://doi.org/10.3390/ma16103763
APA StyleZhang, B., Ren, P., Wang, Z., & Ma, H. (2023). Research on the Spring Creep Based on the Load Simulator of the Double Torsion Spring Steering Gear. Materials, 16(10), 3763. https://doi.org/10.3390/ma16103763