Color and Translucency Variation of a One-Shaded Resin-Based Composite after Repeated Heating Cycles and Staining
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation, Heating, and Staining Protocols
2.2. Color Measurement
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alzraikat, H.; Burrow, M.F.; Maghaireh, G.A.; Taha, N.A. Nanofilled Resin Composite Properties and Clinical Performance: A Review. Oper. Dent. 2018, 43, E173–E190. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Kumar, M. Dental restorative composite materials: A review. J. Oral Biosci. 2019, 61, 78–83. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Sun, H.; Liu, Y.; Liu, W.; Su, B.; Li, S. The Development of Filler Morphology in Dental Resin Composites: A Review. Materials 2021, 14, 5612. [Google Scholar] [CrossRef]
- Ilie, N.; Ionescu, A.C.; Diegelmann, J. Characterization of universal chromatic resin-based composites in terms of cell toxicity and viscoelastic behavior. Dent. Mater. 2022, 38, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Huda, N.; Mahendran, S.; Ac, S.A.; Nassar, M.; Rahman, M.M. The Blending Effect of Single-Shade Composite with Different Shades of Conventional Resin Composites—An In Vitro Study. Eur. J. Dent. 2022. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Z.; Li, J.; Liu, Q.; Yi, F.; Wang, S.; Lu, W. Artificial Structural Colors and Applications. Innovation 2021, 2, 100081. [Google Scholar] [CrossRef]
- Gu, H.; Zhao, Y.; Cheng, Y.; Xie, Z.; Rong, F.; Li, J.; Wang, B.; Fu, D.; Gu, Z. Tailoring Colloidal Photonic Crystals with Wide Viewing Angles. Small 2013, 9, 2266–2271. [Google Scholar] [CrossRef]
- Omnichroma Technical Report. Available online: https://www.tokuyama-us.com/omnichroma-dental-composite/ (accessed on 7 March 2023).
- Lucena, C.; Ruiz-López, J.; Pulgar, R.; Della Bona, A.; Pérez, M.M. Optical behavior of one-shaded resin-based composites. Dent. Mater. 2021, 37, 840–848. [Google Scholar] [CrossRef]
- Sensi, L.; Winkler, C.; Geraldeli, S. Accelerated Aging Effects on Color Stability of Potentially Color Adjusting Resin-based Composites. Oper. Dent. 2021, 46, 188–196. [Google Scholar] [CrossRef]
- Gençer, B.K.; Acar, E.; Tarçın, B. Evaluation of shade matching in the repair of indirect restorative materials with universal shade composites. Eur. Oral Res. 2023, 57, 41–48. [Google Scholar] [CrossRef]
- Sanchez, N.P.; Powers, J.M.; Paravina, R.D. Instrumental and visual evaluation of the color adjustment potential of resin composites. J. Esthet. Restor. Dent. 2019, 31, 465–470. [Google Scholar] [CrossRef]
- de Abreu, J.L.B.; Sampaio, C.S.; Jalkh, E.B.; Hirata, R. Analysis of the color matching of universal resin composites in anterior restorations. J. Esthet. Restor. Dent. 2020, 33, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Nakajima, M.; Furusawa, K.; Tichy, A.; Hosaka, K.; Tagami, J. Color adjustment potential of single-shade resin composite to various-shade human teeth: Effect of structural color phenomenon. Dent. Mater. J. 2021, 40, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Durand, L.B.; Ruiz-López, J.; Perez, B.G.; Ionescu, A.M.; Carrillo-Pérez, F.; Ghinea, R.; Pérez, M.M. Color, lightness, chroma, hue, and translucency adjustment potential of resin composites using CIEDE2000 color difference formula. J. Esthet. Restor. Dent. 2021, 33, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N. Universal Chromatic Resin-Based Composites: Aging Behavior Quantified by Quasi-Static and Viscoelastic Behavior Analysis. Bioengineering 2022, 9, 270. [Google Scholar] [CrossRef] [PubMed]
- Graf, N.; Ilie, N. Long-term mechanical stability and light transmission characteristics of one shade resin-based composites. J. Dent. 2022, 116, 103915. [Google Scholar] [CrossRef]
- Ebaya, M.M.; Ali, A.I.; El-Haliem, H.A.; Mahmoud, S.H. Color stability and surface roughness of ormocer- versus methacrylate-based single shade composite in anterior restoration. BMC Oral Health 2022, 22, 430. [Google Scholar] [CrossRef]
- Yamashita, A.; Kobayashi, S.; Furusawa, K.; Tichy, A.; Oguro, R.; Hosaka, K.; Shimada, Y.; Nakajima, M. Does the thickness of universal-shade composites affect the ability to reflect the color of background dentin? Dent. Mater. J. 2023, 42, 255–265. [Google Scholar] [CrossRef]
- Mundim, F.M.; Garcia, L.D.F.; Cruvinel, D.R.; Lima, F.A.; Bachmann, L.; Pires-De-Souza, F.D.C.P. Color stability, opacity and degree of conversion of pre-heated composites. J. Dent. 2011, 39 (Suppl. 1), e25–e29. [Google Scholar] [CrossRef]
- Lopes, L.C.P.; Terada, R.S.S.; Tsuzuki, F.M.; Giannini, M.; Hirata, R. Heating and preheating of dental restorative materials—A systematic review. Clin. Oral Investig. 2020, 24, 4225–4235. [Google Scholar] [CrossRef]
- Patussi, A.F.C.; Ramacciato, J.C.; da Silva, J.G.R.; Nascimento, V.R.P.; Campos, D.E.S.; Munizz, I.D.A.F.; de Souza, G.M.; Lima, R.B.W. Preheating of dental composite resins: A scoping review. J. Esthet. Restor. Dent. 2022. [Google Scholar] [CrossRef] [PubMed]
- Al-Ahdal, K.; Silikas, N.; Watts, D.C. Rheological properties of resin composites according to variations in composition and temperature. Dent. Mater. 2014, 30, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Ayub, K.V.; Santos, G.C., Jr.; Rizkalla, A.S.; Bohay, R.; Pegoraro, L.F.; Rubo, J.H.; Santos, M.J. Effect of preheating on microhardness and viscosity of 4 resin composites. J. Can. Dent. Assoc. 2014, 80, e12. [Google Scholar] [PubMed]
- Yang, J.; Silikas, N.; Watts, D.C. Pre-heating effects on extrusion force, stickiness and packability of resin-based composite. Dent. Mater. 2019, 35, 1594–1602. [Google Scholar] [CrossRef]
- Loumprinis, N.; Maier, E.; Belli, R.; Petschelt, A.; Eliades, G.; Lohbauer, U. Viscosity and stickiness of dental resin composites at elevated temperatures. Dent. Mater. 2021, 37, 413–422. [Google Scholar] [CrossRef]
- Fróes-Salgado, N.R.; Silva, L.M.; Kawano, Y.; Francci, C.; Reis, A.; Loguercio, A.D. Composite pre-heating: Effects on marginal adaptation, degree of conversion and mechanical properties. Dent. Mater. 2010, 26, 908–914. [Google Scholar] [CrossRef]
- Darabi, F.; Tayefeh-Davalloo, R.; Tavangar, S.M.; Naser-Alavi, F.; Boorboo-Shirazi, M. The effect of composite resin preheating on marginal adaptation of class II restorations. J. Clin. Exp. Dent. 2020, 12, e682–e687. [Google Scholar] [CrossRef]
- Darabi, F.; Seyed-Monir, A.; Mihandoust, S.; Maleki, D. The effect of preheating of composite resin on its color stability after immersion in tea and coffee solutions: An in-vitro study. J. Clin. Exp. Dent. 2019, 11, e1151–e1156. [Google Scholar] [CrossRef]
- D’Amario, M.; Pacioni, S.; Capogreco, M.; Gatto, R.; Baldi, M. Effect of Repeated Preheating Cycles on Flexural Strength of Resin Composites. Oper. Dent. 2013, 38, 33–38. [Google Scholar] [CrossRef]
- Karacan, A.O.; Ozyurt, P. Effect of preheated bulk-fill composite temperature on intrapulpal temperature increase in vitro. J. Esthet. Restor. Dent. 2019, 31, 583–588. [Google Scholar] [CrossRef]
- Goulart, M.; Veleda, B.B.; Damin, D.; Ambrosano, G.M.B.; De Souza, F.H.C.; Erhardt, M.C.G. Preheated composite resin used as a luting agent for indirect restorations: Effects on bond strength and resin-dentin interfaces. Int. J. Esthet. Dent. 2018, 13, 86–97. [Google Scholar] [PubMed]
- Magne, P.; Razaghy, M.; Carvalho, M.A.; Soares, L.M. Luting of inlays, onlays, and overlays with preheated restorative com-posite resin does not prevent seating accuracy. Int. J. Esthet. Dent. 2018, 13, 318–332. [Google Scholar] [PubMed]
- Knezevic, A.; Zeljezic, D.; Kopjar, N.; Duarte, S., Jr.; Par, M.; Tarle, Z.; Duarte, S. Toxicity of Pre-heated Composites Polymerized Directly and Through CAD/CAM Overlay. Acta Stomatol. Croat. 2018, 52, 203–217. [Google Scholar] [CrossRef]
- Luo, M.R.; Cui, G.; Rigg, B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res. Appl. 2001, 26, 340–350. [Google Scholar] [CrossRef]
- Pérez, M.M.; Ghinea, R.; Rivas, M.J.; Yebra, A.; Ionescu, A.M.; Paravina, R.D.; Herrera, L.J. Development of a customized whiteness index for dentistry based on CIELAB color space. Dent. Mater. 2016, 32, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Salas, M.; Lucena, C.; Herrera, L.J.; Yebra, A.; Della Bona, A.; Pérez, M.M. Translucency thresholds for dental materials. Dent. Mater. 2018, 34, 1168–1174. [Google Scholar] [CrossRef]
- Kahnamouei, M.A.; Gholizadeh, S.; Rikhtegaran, S.; Daneshpooy, M.; Kimyai, S.; Oskoee, P.A.; Rezaei, Y. Effect of preheat repetition on color stability of methacrylate- and silorane-based composite resins. J. Dent. Res. Dent. Clin. Dent. Prospect. 2017, 11, 222–228. [Google Scholar]
- Gugelmin, B.P.; Miguel, L.C.M.; Filho, F.B.; da Cunha, L.F.; Correr, G.M.; Gonzaga, C.C. Color Stability of Ceramic Veneers Luted with Resin Cements and Pre-Heated Composites: 12 Months Follow-Up. Braz. Dent. J. 2020, 31, 69–77. [Google Scholar] [CrossRef]
- El-Rashidy, A.A.; Abdelraouf, R.M.; Habib, N.A. Effect of two artificial aging protocols on color and gloss of single-shade versus multi-shade resin composites. BMC Oral Health 2022, 22, 321. [Google Scholar] [CrossRef]
- Alshehri, A.; Alhalabi, F.; Mustafa, M.; Awad, M.M.; Alqhtani, M.; Almutairi, M.; Alhijab, F.; Jurado, C.A.; Fischer, N.G.; Nurrohman, H.; et al. Effects of Accelerated Aging on Color Stability and Surface Roughness of a Biomimetic Composite: An In Vitro Study. Biomimetics 2022, 7, 158. [Google Scholar] [CrossRef]
- Ersöz, B.; Karaoğlanoğlu, S.; Oktay, E.A.; Aydin, N. Resistance of Single-shade Composites to Discoloration. Oper. Dent. 2022, 47, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Elkaffass, A.; Eltoukhy, R.I.; Elnegoly, S.A.; Mahmoud, S.H. Influence of preheating on mechanical and surface properties of nanofilled resin composites. J. Clin. Exp. Dent. 2020, 12, e494–e500. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.F.J.; Ribeiro, R.B.; Liberato, W.F.; Salgado, V.E.; Moraes, R.R.; Cavalcante, L.M. Curing potential and color stability of different resin-based luting materials. Dent. Mater. 2020, 36, e309–e315. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, T.A.; Rodgers, B.; Suliman, A.A.; Johnston, W.M. Color and translucency stability of contemporary resin-based restorative materials. J. Esthet. Restor. Dent. 2021, 33, 899–905. [Google Scholar] [CrossRef] [PubMed]
- CIE. Technical Report: Colorimetry; CIE: Vienna, Austria, 2004. [Google Scholar]
- Manziuc, M.M.; Gasparik, C.; Burde, A.V.; Ruiz-López, J.; Buduru, S.; Dudea, D. Influence of manufacturing technique on the color of zirconia restorations: Monolithic versus layered crowns. J. Esthet. Restor. Dent. 2022, 34, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.M.; Carrillo-Perez, F.; Tejada-Casado, M.; Ruiz-López, J.; Benavides-Reyes, C.; Herrera, L.J. CIEDE2000 lightness, chroma and hue human gingiva thresholds. J. Dent. 2022, 124, 104213. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-López, J.; Espinar, C.; Lucena, C.; de la Cruz Cardona, J.; Pulgar, R.; Pérez, M.M. Effect of thickness on color and translucency of a multi-color polymer-infiltrated ceramic-network material. J. Esthet. Restor. Dent. 2023, 35, 381–389. [Google Scholar] [CrossRef]
- Paravina, R.D.; Ghinea, R.; Herrera, L.J.; Della Bona, A.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; Perez, M.D.M. Color Difference Thresholds in Dentistry. J. Esthet. Restor. Dent. 2015, 27, S1–S9. [Google Scholar] [CrossRef]
- Paravina, R.D.; Pérez, M.M.; Ghinea, R. Acceptability and perceptibility thresholds in dentistry: A comprehensive review of clinical and research applications. J. Esthet. Restor. Dent. 2019, 31, 103–112. [Google Scholar] [CrossRef]
- ISO/TR 28642; Dentistry—Guidance on Colour Measurement. ISO: Geneva, Switzerland, 2016.
- Nobbs, J.H. A lightness, chroma and hue splitting approach to CIEDE2000 colour differences. Adv. Colours Sci. Technol. 2002, 5, 46–53. [Google Scholar]
- Pérez, M.M.; Herrera, L.J.; Carrillo, F.; Pecho, O.E.; Dudea, D.; Gasparik, C.; Ghinea, R.; Della Bona, A. Whiteness difference thresholds in dentistry. Dent. Mater. 2019, 35, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Johnston, W.M.; Ma, T.; Kienle, B.H. Translucency parameter of colorants for maxillofacial prostheses. Int. J. Prosthodont. 1995, 8, 79–86. [Google Scholar]
- Castro, F.L.; Pazinatto, F.B.; De Lima, É.; Cesar, P.F.; Reges, R.V. The effect of preheating and opacity on the sorption and solubility of a composite resin. Gen. Dent. 2016, 64, 57–61. [Google Scholar] [PubMed]
- Theodoridis, M.; Dionysopoulos, D.; Koliniotou-Koumpia, E.; Dionysopoulos, P.; Gerasimou, P. Effect of preheating and shade on surface microhardness of silorane-based composites. J. Investig. Clin. Dent. 2017, 8, e12204. [Google Scholar] [CrossRef]
- Daronch, M.; Rueggeberg, F.A.; De Goes, M.F.; Giudici, R. Polymerization Kinetics of Pre-heated Composite. J. Dent. Res. 2006, 85, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, M.; Newman, S.M.; Stansbury, J.W. Use of near-IR to monitor the influence of external heating on dental composite photopolymerization. Dent. Mater. 2004, 20, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003, 24, 655–665. [Google Scholar] [CrossRef] [PubMed]
L* | a* | b* | C* | h° | WID | TP00 | |
---|---|---|---|---|---|---|---|
Group 1 (0 cycles) | 74.0 (1.1) | 1.2 (0.2) a | 14.0 (0.8) a,b | 14.1 (0.8) a,b | 84.9 (1.1) a | 19.6 (0.7) | 23.9 (0.9) a |
Group 2 (1 cycle) | 75.4 (0.4) | 0.6 (0.2) | 14.1 (0.7) a,c | 14.2 (0.7) a,c | 87.5 (0.8) | 21.6 (0.5) | 22.1 (0.5) |
Group 3 (5 cycles) | 75.1 (1.0) a | 1.4 (0.2) | 13.5 (0.6) | 13.6 (0.6) | 84.1 (1.0) | 20.3 (0.6) a | 24.4 (0.3) b |
Group 4 (10 cycles) | 75.1 (1.0) a | 1.1 (0.2) a | 13.8 (0.7) b,c | 13.9 (0.7) b,c | 85.3 (0.9) a | 20.5 (0.6) a | 24.0 (0.7) a,b |
L* | a* | b* | C* | h° | WID | TP00 | |
---|---|---|---|---|---|---|---|
Group 1 (0 cycles) | 72.1 (0.7) | −0.7 (0.5) | 24.2 (1.7) | 24.2 (1.7) | 91.7 (1.0) | 11.9 (1.0) | 25.9 (0.7) |
Group 2 (1 cycle) | 72.5 (0.5) | −0.6 (0.4) | 23.8 (1.5) | 23.8 (1.5) | 91.4 (0.8) | 12.3 (1.0) | 25.7 (0.5) |
Group 3 (5 cycles) | 72.6 (0.3) | −0.3 (0.3) | 22.4 (1.1) | 22.4 (1.1) | 90.7 (0.7) | 13.2 (0.6) | 26.4 (0.3) |
Group 4 (10 cycles) | 73.0 (0.5) | 0.0 (0.4) | 20.9 (1.1) | 20.9 (1.1) | 90.0 (1.0) | 14.4 (0.7) | 25.8 (0.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prodan, C.M.; Gasparik, C.; Ruiz-López, J.; Dudea, D. Color and Translucency Variation of a One-Shaded Resin-Based Composite after Repeated Heating Cycles and Staining. Materials 2023, 16, 3793. https://doi.org/10.3390/ma16103793
Prodan CM, Gasparik C, Ruiz-López J, Dudea D. Color and Translucency Variation of a One-Shaded Resin-Based Composite after Repeated Heating Cycles and Staining. Materials. 2023; 16(10):3793. https://doi.org/10.3390/ma16103793
Chicago/Turabian StyleProdan, Corina Mirela, Cristina Gasparik, Javier Ruiz-López, and Diana Dudea. 2023. "Color and Translucency Variation of a One-Shaded Resin-Based Composite after Repeated Heating Cycles and Staining" Materials 16, no. 10: 3793. https://doi.org/10.3390/ma16103793
APA StyleProdan, C. M., Gasparik, C., Ruiz-López, J., & Dudea, D. (2023). Color and Translucency Variation of a One-Shaded Resin-Based Composite after Repeated Heating Cycles and Staining. Materials, 16(10), 3793. https://doi.org/10.3390/ma16103793