The Influence of MSR-B Mg Alloy Surface Preparation on Bonding Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Testing Methodology
2.2. Surface Preparation
2.3. Roughness Test
2.4. Adhesive Bonding
2.5. Adhesion Strength
2.6. Metallographic Tests
3. Results and Discussion
3.1. Roughness Measurements
3.2. Metallographic Observation of Pre-Treatment Surface
4. Conclusions
- -
- The increased strength of the adhesive joint was related to the even development of the adhesive surface and the elimination of impurities.
- -
- Blast-abrasive treatment as surface preparation for the bonding of MSR-B Mg alloy led to the highest shear strength of the adhesive joint (an increase of 31% compared with grinding and 64% compared with degreasing with isopropyl alcohol).
- -
- The application of LOCTITE® EA 9514 one-part thermosetting epoxy adhesive for bonding materials 1.6 mm in thickness resulted in the destruction of the base material, not the adhesive. This showed that the high properties of the adhesive could allow it to be employed in industries for the bonding of Mg alloys.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neelameggham, R. Primary production of magnesium. In Fundamentals of Magnesium Alloy Metallurgy; Kaya, M.O., Pekguleryuz, K.U., Kainer, A.A., Eds.; Woodhead Publishing Limited: Sawston, UK, 2013; pp. 1–32. [Google Scholar]
- Gupta, M.; Sharon, N.M.L. Magnesium, Magnesium Alloys, and Magnesium Composites; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Pilarczyk, J. Poradnik inżyniera. Spawalnictwo. T. 2; WNT: Gliwice, Poland, 2005. [Google Scholar]
- Gontarz, A. Kucie Matrycowe Stopów Magnezu; Wydawnictwo Naukowe Instytutu Technologii Eksploatacji: Random, Poland, 2016. [Google Scholar]
- Dziadoń, A.; Mola, R. Magnesium—Trends of development of mechanical properties. Obróbka Plast. Met. 2013, 24, 253–277. [Google Scholar]
- Kumar, D.S.; Sasanka, C.T.; Ravindra, K.; Suman, K. Magnesium and its alloys in automotive applications—A review. Am. J. Mater. Sci. Technol. 2015, 4, 12–30. [Google Scholar] [CrossRef]
- Kulekci, M.K. Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 2008, 39, 851–865. [Google Scholar] [CrossRef]
- Brown, R.E. History Since 1945. In Magnesium Technology Metallurgy, Design Data, Applications; Friedrich, H.E., Mordike, B.L., Eds.; Springer: Berlin, Germany, 2006; pp. 12–28. [Google Scholar]
- Tekumalla, S.; Gupta, M. An insight into ignition factors and mechanisms of magnesium based materials: A review. Mater. Des. 2017, 113, 84–98. [Google Scholar] [CrossRef]
- Godzimirski, J.; Kozakiewicz, J.; Łunarski, J.; Zielecki, W. Konstrukcyjne Połączenia Klejowe Elementów Metalowych w Budowie Maszyn, Rzeszów; Oficyna Wydawnicza Politechniki Rzeszowskiej: Krakow, Poland, 1997. [Google Scholar]
- Barton, G.; Deinzer, G.; Baumgart, H. Wybrane zagadnienia wytwarzania i eksploatacji elementów maszyn ze stopów magnezu. J. Kones Intern. Combust. Engines 2004, 11, 29–34. [Google Scholar]
- Akyuz, B. Machinability of magnesium and its alloys. J. Sci. Technol. 2011, 1, 31–38. [Google Scholar]
- Piekarczyk, M. Zastosowanie Połączeń Klejonych w Konstrukcjach Metalowych; Politechnika Krakowska: Krakow, Poland, 2012. [Google Scholar]
- Cooke, K.O.; Alhazaa, A.; Atieh, A.M. Dissimilar Welding and Joining of Magnesium Alloys: Principles and Application. In Magnesium—The Wonder Element for Engineering/Biomedical Applications; IntechOpen: London, UK, 2019. [Google Scholar]
- Zheng, Y. Novel magnesium alloys developed for biomedical application: A review. J. Mater. Sci. Technol. 2013, 29, 489–502. [Google Scholar]
- Luo, A.A.; Sachdev, A.K. Applications of magnesium alloys in automotive engineering. In Advances in Wrought Magnesium Alloys; Woodhead Publishing: Cambridge, UK, 2012; pp. 393–426. [Google Scholar]
- Westengen, H.; Rashed, H.M.M.A. Magnesium Alloys: Properties and Applications. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Avedesian, M.M.; Baker, H. ASM Specialty Handbook: Magnesium and Magnesium Alloys; ASM International: Geauga, OH, USA, 1999; pp. 12–28. [Google Scholar]
- Dobrzański, L.A. Podstawy Nauki o Materiałach i Metaloznawstwo; WNT: Gliwice, Poland, 2002. [Google Scholar]
- Oczoś, K.E. Rozszerzenie granic stosowalności stopów magnezu. Mechanik 2009, 5–6, 386–400. [Google Scholar]
- Oczoś, K.E.; Kawalec, A. Kształtowanie Metali Lekkich; PWN: Warszawa, Poland, 2012. [Google Scholar]
- Kainer, K.U.; Srinivasan, P.; Blawert, C.; Dietzel, W. Corrosion of Magnesium and Its Alloys; Shreir’s Corrosion; Richardson Tony, J.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- PN-EN 1753:2020; Magnez i Stopy Magnezu—Gąski i Odlewy ze Stopów Magnezu. European Standard: Brussels, Belgium, 2020.
- Davies, G. Materials for Automobile Bodies; Elsevier: Alpharetta, GA, USA, 2012. [Google Scholar]
- Czerwinski, F. Magnesium Injection Molding; Springer: New York, NY, USA, 2008. [Google Scholar]
- Brockmann, W.; Gei, P.L.; Klingen, J.; Schrder, B.; Mikhail, B. Adhesive Bonding Technology: Fields of Application. In Adhesive Bonding: Materials, Applications and Technology; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Mordike, B.L.; Ebert, T. Magnesium, properties–applications–potential. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Kuczmaszewski, J.; Zaleski, K. Obróbka Skrawaniem Stopów Aluminium i Magnezu; Politechnika Lubelska: Lublin, Poland, 2015. [Google Scholar]
- Luo, A.A. Magnesium Casting Technology for Structural Applications. J. Magnes. Alloy. 2013, 1, 2–22. [Google Scholar] [CrossRef]
- Kainer, K.U.; Buch, F. The Current State of Technology and Potential for Further Development of Magnesium Applications. In Magnesium—Alloys and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2003; pp. 1–21. [Google Scholar]
- Schmid-Fetzer, R.; Nie, J.; Zhao, X.; Chen, H. Intermetallic Phase Formation in Mg–Ag–Nd (QE) and Mg–Ag–Nd–Zn (QEZ) Alloys. In Magnesium Technology 2020; Jordon, J.B., Miller, V., Joshi, V.V., Neelameggham, N.R., Eds.; Springer: Cham, Switzerland, 2020; pp. 71–78. [Google Scholar]
- Radomski, T. Materiałoznawstwo Lotnicze; Oficyna Wydawnicza Politechniki Warszawskiej: Warsaw, Poland, 2003. [Google Scholar]
- Rakowska, A.; Podosek, M.; Ciach, R. Some aspects of solidification and homogenisation of Mg–Ag alloys. Mater. Des. 1997, 18, 279–283. [Google Scholar] [CrossRef]
- Srivatsan, T.S.; Sudarshan, T.S.; Manigandan, K. Manufacturing Techniques for Materials: Engineering and Engineered; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- da Silva, L.F.M.; Ochsner, A.; Adams, R.D. Introduction to Adhesive Bonding Technology. In Handbook of Adhesion Technology, 2nd ed.; Da Silva, L.F.M., Ochsner, A., Adams, R.D., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–10. [Google Scholar]
- Brockmann, W.; Geiß, P.L.; Klingen, J.; Schrder, B. Adhesive Bonding: Materials, Applications and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 5–10. [Google Scholar]
- Pocius, A.V. Adhesion and Adhesives Technology; Hanser Publications: Cincinnati, OH, USA, 2012. [Google Scholar]
- Pizzi, A.; Mittal, K.L. Handbook of Adhesive Technology; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Liu, L. Introduction to the welding and joining of magnesium. In Adhesive Bonding of Magnesium Alloys; Liu, L., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2010. [Google Scholar]
- Troughton, M.J. Handbook of Plastics Joining. A Practical Guide, 2nd ed.; William Andrew: Norwich, NY, USA, 2008; pp. 145–173. [Google Scholar]
- Habenicht, G. Applied Adhesive Bonding: A Practical Guide for Flawless Results, 1st ed.; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- EN ISO 9001; 2015 Quality management systems—Requirements. ISO: Geneva, Switzerland, 2015.
- Packham, D.E. Adhesive technology and sustainability. Int. J. Adhes. Adhes. 2009, 29, 248–252. [Google Scholar] [CrossRef]
- EN 923:2015; Adhesives—Terms and Definitions. European Standard: Brussels, Belgium, 2015.
- Noeske, M.; Cavalcanti, W.L.; Brüning, H.; Mayer, B.; Stamopoulos, A.; Chamos, A.; Krousarlis, T.; Malinowski, P.H.; Ostachowicz, W.M.; Tserpes, K.; et al. Introduction to Recent Advances in Quality Assessment for Adhesive Bonding Technology. In Adhesive Bonding of Aircraft Composite Structures Non-Destructive Testing and Quality Assurance Concepts; Cavalcanti, W.L., Brune, K., Noeske, M., Tserpes, K., Ostachowicz, W.M., Schlag, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–50. [Google Scholar]
- Godzimirski, J. Wytrzymałość Doraźna i Długotrwała Oraz Pełzanie Kleju Epidian 57”. Polimery 2002, 47, 721–726. [Google Scholar] [CrossRef]
- Kinloch, A.J. Adhesion and Adhesives: Science and Technology; Chapman & Hall: London, UK, 1987. [Google Scholar]
- Adams, R.D.; Comyn, J.; Wake, W.C. Structural Adhesive Joints in Engineering, 2nd ed.; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Dostal, C.A. (Ed.) Engineered Materials Handbook; Vol 3: Adhesives and sealants; ASM International: Geauga, OH, USA, 1990. [Google Scholar]
- Tong, L.; Steven, G.P. Analysis and Design of Structural Bonded Joints; Springer: New York, NY, USA, 1999. [Google Scholar]
- Petrie, E.M. Handbook of Adhesives and Sealants, 2nd ed.; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Packham, D.E. Handbook of Adhesion, 2nd ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Possart, W. Adhesion: Current Research and Application; Wiley-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Lacombe, R. Adhesion Measurement Methods: Theory and Practice; Taylor & Francis Inc.: Abingdon, UK, 2006. [Google Scholar]
- Ebnesajjad, S.; Landrock, A.H. Adhesives Technology Handbook, 2nd ed.; William Andrew: Norwich, NY, USA, 2008. [Google Scholar]
- da Silva, L.F.M.; Öchsner, A. Modeling of Adhesively Bonded Joints; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Godzimirski, J. Problemy Klejenia Konstrukcyjnego. Technol. I Autom. Montażu 2009, 1, 25–31. [Google Scholar]
- Yu, I.J. Mg Alloy Surface Treatment. In Magnesium Alloys; Aliofkhazraei, M., Ed.; IntechOpen: London, UK, 2017; pp. 5–90. [Google Scholar]
- Clearfield, H.M.; McNamara, D.K.; Davis, G.D. Adherend Surface Preparation for Structural Adhesive Bonding. In Adhesive Bonding; Lee, L.H., Ed.; Springer: New York, NY, USA, 1991; pp. 203–237. [Google Scholar]
- Pocius, A.V. Adhesion and Adhesives Technology: An Introduction; Hanser Publishers: Munich, Germany, 1997. [Google Scholar]
- Dillard, D.A.; Pocius, A.V. The Mechanics of Adhesion; Elsevier: Alpharetta, GA, USA, 2002. [Google Scholar]
- Packham, D.E. Theories of fundamental adhesion. In Handbook of Adhesion Technology, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kaczorowska, E. Comparison of methods for testing the peel strength for different methods of preparation of surface samples. Trans. Inst. Aviat. 2016, 244, 42–50. [Google Scholar] [CrossRef]
- Domińczuk, J. The influence of selected constructional and technological factors on the adhesive joints strength. Postępy Nauk. I Tech. 2011, 10, 14–26. [Google Scholar]
- Understanding Adhesive Failures. Available online: https://tombrowninc.com/understanding-adhesive-failures/ (accessed on 1 March 2023).
- Wagih, A.; Tao, R.; Yudhanto, A.; Lubineau, G. Improving mode II fracture toughness of secondary bonded joints using laser patterning of adherends. Compos. Part A Appl. Sci. Manuf. 2020, 134, 105892. [Google Scholar] [CrossRef]
- Rudawska, A.; Chruściel, M. Wpływ sposobu przygotowania powierzchni na wytrzymałość połączeń klejowych lotniczego stopu aluminium. Technol. I Autom. Montażu 2011, 2, 42–46. [Google Scholar]
- Ren, D.X.; Liu, L.M.; Li, Y.F. Investigation on overlap joining of AZ61 magnesium alloy: Laser welding, adhesive bonding, and laser weld bonding. Int. J. Adv. Manuf. Technol. 2012, 61, 195–204. [Google Scholar] [CrossRef]
- Xu, W.; Liu, L.; Zhou, Y.; Mori, H.; Chen, D.L. Tensile and fatigue properties of weld-bonded and adhesive-bonded magnesium alloy joints. Mater. Sci. Eng. A 2013, 563, 125–132. [Google Scholar] [CrossRef]
- Zheng, R.; Jianping, L.; Wang, P.C.; Wu, Y. Correlation between Surface Characteristics and Static Strength of Adhesive-Bonded Magnesium AZ31B. Int. J. Adv. Manuf. Technol. 2016, 84, 1661–1670. [Google Scholar] [CrossRef]
- Mirski, Z.; Wojdat, T.; Zimniak, Z.; Łącka, I.; Pawełko, A. Effect of the Preparation of Aluminium, Magnesium and Titanium Alloys Surface on Properties of Adhesive Bonded Joints. Biul. Inst. Spaw. 2017, 5, 81–90. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, X.; Jiang, K.; Chen, J.; Zuo, Y. The influences of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment. Surf. Coat. Technol. 2010, 205, 1789–1792. [Google Scholar] [CrossRef]
- Yuea, Y.Y.; Liga, Z.X.; Wana, T.T.; Wang, P.C. Effects of phosphate pretreatment and hot-humid environmental exposure on static strength of adhesive-bonded magnesium AZ31 sheets. Prog. Org. Coat. 2013, 76, 835–843. [Google Scholar] [CrossRef]
- EN 1465; Adhesives—Determination of Tensile Lap-Shear Strength of Bonded Assemblies. European Standard: Brussels, Belgium, 2009.
- ISO 4587; Adhesive Lap—Shear Strength of Rigid-to-Rigid Bonded Assemblies. ISO: Geneva, Switzerland, 2003.
- ISO 13565-2:1996; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method; Surfaces Having Stratified Functional Properties—Part 2: Height Characterization Using the Linear Material Ratio Curve. ISO: Geneva, Switzerland, 1996.
Alloy | Chemical Composition, [%] | |||
---|---|---|---|---|
Mg | Ag | RE | Zr | |
EQ21 | Balance | 1.5 | 2.1 | 0.7 |
QE22 (MSR-B) | Balance | 2.0 ÷ 3.0 | 2.0 ÷ 3.0 | 0.4 ÷ 1.0 |
Variant No. | Sample Dimensions, mm | Adhesive Length of Layer, mm |
---|---|---|
I | 25 × 100 × 1.6 | 12.5 |
II | 25 × 100 × 3.0 | 6.0 |
No. | Pre-Treatment | Detail |
---|---|---|
1 | Surface degreasing | Cleaning with isopropyl alcohol |
2 | Grinding | Grinding with 120 μm sandpaper until unpolished (matt), cleaning with isopropyl alcohol |
3 | Abrasive blasting | Blasting with 120–150 μm corundum under 0.4 MPa pressure, cleaning with isopropyl alcohol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łyczkowska, K.; Miara, D.; Rams, B.; Adamiec, J.; Baluch, K. The Influence of MSR-B Mg Alloy Surface Preparation on Bonding Properties. Materials 2023, 16, 3887. https://doi.org/10.3390/ma16103887
Łyczkowska K, Miara D, Rams B, Adamiec J, Baluch K. The Influence of MSR-B Mg Alloy Surface Preparation on Bonding Properties. Materials. 2023; 16(10):3887. https://doi.org/10.3390/ma16103887
Chicago/Turabian StyleŁyczkowska, Katarzyna, Damian Miara, Beata Rams, Janusz Adamiec, and Katarzyna Baluch. 2023. "The Influence of MSR-B Mg Alloy Surface Preparation on Bonding Properties" Materials 16, no. 10: 3887. https://doi.org/10.3390/ma16103887
APA StyleŁyczkowska, K., Miara, D., Rams, B., Adamiec, J., & Baluch, K. (2023). The Influence of MSR-B Mg Alloy Surface Preparation on Bonding Properties. Materials, 16(10), 3887. https://doi.org/10.3390/ma16103887