Comparative Study on Mechanical Property and Fracture Behavior of Age-Hardened LM4 Monolithic Composites Reinforced with TiB2 and Si3N4
Abstract
:1. Introduction
2. Methodology
2.1. Phase I
2.2. Phase II
2.3. Phase III
2.4. Phase IV
2.5. Phase V
3. Results and Discussion
3.1. Optical Microstructure Analysis
3.2. Micro Vickers Hardness Comparison
3.3. Tensile Strength Analysis
3.4. Fracture Analysis of Peak-Aged L3TB and L3SN
4. Conclusions
- Two-stage stir casting method was proven to be efficient in fabricating defect-free composites with uniform distribution of reinforcements within the matrix.
- With an increase in wt.% of reinforcements, there was an enhancement in the mechanical properties of composites in both cases (TiB2 and Si3N4).
- TiB2 composites achieved better hardness and UTS values when compared to Si3N4 composites in both AC and heat-treated conditions.
- Precipitation hardening treatment was effective enough to improve the properties of composite samples when compared to AC samples.
- Samples exposed to MSHT + artificial aging at 100 °C gave the highest hardness and UTS values compared to MSHT + artificial aging at 200 °C, and SSHT + artificial aging at 100 and 200 °C samples in both the composites.
- The formation of metastable intermetallic phases (Al2Cu, Q, and Mg2Si) was the key factor for the enhancement of mechanical properties of heat-treated composites.
- Fracture surface analysis revealed a brittle failure in the peak-aged L3TB sample, whereas the peak-aged L3SN sample experienced a mixed mode of failure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, Y.; Samuel, A.M.; Doty, H.W.; Valtierra, S.; Samuel, F.H. Optimizing the tensile properties of Al-Si-Cu-Mg 319-type alloys: Role of solution heat treatment. Mater. Des. 2014, 58, 426–438. [Google Scholar] [CrossRef]
- Radhika, N.; Sasikumar, J.; Jojith, R. Effect of grain modifier on mechanical and tribological properties of Al-Si alloy and composite. Silicon 2021, 13, 841–855. [Google Scholar] [CrossRef]
- Shan, L.; Tan, C.Y.; Rajak, D.K. Creep behavior of A356 aluminum alloy reinforced with multi-walled carbon nanotubes by stir casting. Materials 2022, 15, 8959. [Google Scholar] [CrossRef] [PubMed]
- Chinababu, M.; Naga Krishna, N.; Sivaprasad, K.; Prashanth, K.G.; Bhaskara Rao, E. Evolution of microstructure and mechanical properties of LM25–HEA composite processed through stir casting with a bottom pouring system. Materials 2021, 15, 230. [Google Scholar] [CrossRef]
- Karbalaei Akbari, M.; Baharvandi, H.R.R.; Shirvanimoghaddam, K. Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. 2015, 66, 150–161. [Google Scholar] [CrossRef]
- Raghavendra Rao, P.S.; Mohan, C.B. Study on mechanical performance of silicon nitride reinforced aluminium metal matrix composites. Mater. Today Proc. 2020, 33, 5534–5538. [Google Scholar] [CrossRef]
- Pethuraj, M.; Uthayakumar, M.; Rajesh, S.; Abdul Majid, M.S.; Rajakarunakaran, S.; Niemczewska-Wójcik, M. Dry sliding wear studies on sillimanite and B4C reinforced aluminium hybrid composites fabricated by vacuum assisted stir casting process. Materials 2022, 16, 259. [Google Scholar] [CrossRef]
- Andilab, B.; Emadi, P.; Ravindran, C. Casting and characterization of A319 aluminum alloy reinforced with graphene using hybrid semisolid stirring and ultrasonic processing. Materials 2022, 15, 7232. [Google Scholar] [CrossRef]
- Li, Q.; Qiu, F.; Dong, B.X.; Gao, X.; Shu, S.L. Processing, multiscale microstructure refinement and mechanical property enhancement of hypoeutectic Al–Si alloys via in situ bimodal-sized TiB2 particles. Mater. Sci. Eng. A 2020, 777, 139081. [Google Scholar] [CrossRef]
- Dey, D.; Bhowmik, A.; Biswas, A. Characterization of physical and mechanical properties of aluminium based composites reinforced with titanium diboride particulates. J. Compos. Mater. 2021, 55, 1979–1991. [Google Scholar] [CrossRef]
- Ramesh, M.; Jafrey Daniel, D.; Ravichandran, M. Investigation on mechanical properties and wear behaviour of titanium diboride reinforced composites. FME Trans. 2019, 47, 873–879. [Google Scholar] [CrossRef]
- Pazhouhanfar, Y.; Eghbali, B. Microstructural characterization and mechanical properties of TiB2 reinforced Al6061 matrix composites produced using stir casting process. Mater. Sci. Eng. A 2018, 710, 172–180. [Google Scholar] [CrossRef]
- Mohanavel, V.; Ravichandran, M. Optimization of parameters to improve the properties of AA7178/Si3N4 composites employing taguchi approach. Silicon 2022, 14, 1381–1394. [Google Scholar] [CrossRef]
- Alam, M.T.; Azhar, M.; Rafat, Y. Physical, mechanical and morphological characterization of A356/Si3N4 nanoparticles stir casting composites. J. Eng. Res. 2022, 1, 1–16. [Google Scholar] [CrossRef]
- Manjunatha, C.J.; Narayana, V.; Raja, D.B.P. Investigating the effect of Si3N4 reinforcement on the morphological and mechanical behavior of AA2219 alloy. Silicon 2022, 14, 2655–2667. [Google Scholar] [CrossRef]
- Zhang, C.; Yin, J.; Yao, D.; Zuo, K.; Xia, Y.; Liang, H. Enhanced tensile properties of Al matrix composites reinforced with β-Si3N4 whiskers. Compos. Part A Appl. Sci. Manuf. 2017, 102, 145–153. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L.; Que, B.; Zhao, G.; Zhang, C. Effects of artificial aging on precipitation behavior, mechanical properties and corrosion resistance of Si3N4/6061Al composite fabricated by sintering and hot extrusion processes. J. Mater. Process. Technol. 2022, 306, 117644. [Google Scholar] [CrossRef]
- Xiu, Z.Y.; Chen, G.Q.; Wu, G.H.; Yang, W.S.; Liu, Y.M. Effect of volume fraction on microstructure and mechanical properties of Si3N4/Al composites. Trans. Nonferrous Met. Soc. China Engl. Ed. 2011, 21, s285–s289. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, Y.; Chen, Z.; Zheng, Y.; Kang, H. Combining effects of TiB2 and La on the aging behavior of A356 alloy. Mater. Sci. Eng. A 2015, 644, 425–430. [Google Scholar] [CrossRef]
- Akhil, M.G.; Preenu, S.; Hari, S.; Ravi, M. Effect of heat treatment on the mechanical properties of squeeze-cast Al–5Si–3Cu alloy for automotive applications. Trans. Indian Inst. Met. 2019, 72, 1129–1132. [Google Scholar] [CrossRef]
- Vandersluis, E.; Ravindran, C. Effects of solution heat treatment time on the as-quenched microstructure, hardness and electrical conductivity of B319 aluminum alloy. J. Alloys Compd. 2020, 838, 155577. [Google Scholar] [CrossRef]
- Salleh, M.S.; Hashim, H.; Omar, M.Z.; Sulong, A.B.; Abd Rahman, S. T6 heat treatment optimization of thixoformed LM4 aluminium alloy using response surface methodology. Malays. J. Compos. Sci. Manuf. 2020, 3, 1–13. [Google Scholar] [CrossRef]
- Mohamed, A.M.A.; Samuel, F.H.; Al kahtani, S. Influence of Mg and solution heat treatment on the occurrence of incipient melting in Al-Si-Cu-Mg cast alloys. Mater. Sci. Eng. A 2012, 543, 22–34. [Google Scholar] [CrossRef]
- Sokolowski, J.H.; Djurdjevic, M.B.; Kierkus, C.A.; Northwood, D.O. Improvement of 319 aluminum alloy casting durability by high temperature solution treatment. J. Mater. Process. Technol. 2001, 109, 174–180. [Google Scholar] [CrossRef]
- ASTM E1251-11; Standard Test Method for Analysis of Aluminum and Aluminum Alloys by Spark. ASTM: West Conshohocken, PA, USA, 2015.
- Doddapaneni, S.; Kumar, S.; Shettar, M.; Rao, S.; Sharma, S.; MC, G. Experimental investigation to confirm the presence of TiB2 reinforcements in the matrix and effect of artificial aging on hardness and tensile properties of stir-cast LM4-TiB2 composite. Crystals 2022, 12, 1114. [Google Scholar] [CrossRef]
- Doddapaneni, S.; Shankar, G.; Sharma, S.; Kini, A.; Shettar, M. Effects of solutionizing and aging alteration on tensile behavior of stir cast LM4-Si3N4 composites. Int. J. Automot. Mech. Eng. 2022, 19, 10121–10131. [Google Scholar] [CrossRef]
- Jones, A.H.; Dobedoe, R.S.; Lewis, M.H. Mechanical properties and tribology of Si3N4-TiB2 ceramic composites produced by hot pressing and hot isostatic pressing. J. Eur. Ceram. Soc. 2001, 21, 969–980. [Google Scholar] [CrossRef]
- Garat, M. Optimization of an aluminum cylinder head alloy of the AlSi7Cu3MnMg type reinforced by additions of peritectic elements. Int. J. Met. 2011, 5, 17–24. [Google Scholar] [CrossRef]
- Srinivas, D.; Gowrishankar, M.C.; Sharma, S.; Hegde, A.; Gurumurthy, B.M.; Deepak, D. Optimization of preheating temperature for TiB2 reinforcement on the preparation of stir cast LM4 + TiB2 composites and effect of artificial aging on hardness improvement using ANOVA. Manuf. Rev. 2022, 9, 8. [Google Scholar] [CrossRef]
- Yadav, P.; Ranjan, A.; Kumar, H.; Mishra, A.; Yoon, J. A contemporary review of aluminium MMC developed through stir-casting route. Materials 2021, 14, 6386. [Google Scholar] [CrossRef]
- Kareem, A.; Qudeiri, J.A.; Abdudeen, A.; Ahammed, T.; Ziout, A. A review on AA 6061 metal matrix composites produced by stir casting. Materials 2021, 14, 175. [Google Scholar] [CrossRef] [PubMed]
- ASTM E8/E8M; Standard Test Methods for Tension Testing of Metallic Materials. ASTM: West Conshohocken, PA, USA, 2010. [CrossRef]
- ASTM E384; Standard Test Method for Microindentation Hardness of Materials. ASTM: West Conshohocken, PA, USA, 2017. [CrossRef]
- Wu, X.; Zhang, H.; Zhang, F.; Zhang, H. Effect of cooling rate and Co content on the formation of Fe-rich intermetallics in hypoeutectic Al7Si0.3Mg alloy with 0.5%Fe. Mater. Charact. 2018, 139, 116–124. [Google Scholar] [CrossRef]
- Doddapaneni, S.; Sharma, S.; Shankar, M.C.G.; Shettar, M.; Hegde, A. Effect of precipitation hardening treatment on hardness and tensile behaviour of stir cast LM4 hybrid composites through TEM and fractography analysis. J. Mater. Res. Technol. 2023, 23, 1584–1598. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Wang, W.; Zhao, Y.; He, N. Effect of TiB2 nanoparticle content on the microstructure and mechanical properties of TiB2/Mg-4Al-1.5Si composites. Materials 2023, 16, 2852. [Google Scholar] [CrossRef] [PubMed]
- Bharath, V.; Auradi, V.; Kumar, G.; Galal, A. Microstructural evolution, tensile failure, fatigue behavior and wear properties of Al2O3 reinforced Al2014 alloy T6 heat treated metal composites. Materials 2022, 15, 4244. [Google Scholar] [CrossRef]
- Donald, D.K.B.; Askeland, R.; Fulay, P.P. Essentials of Materials Science and Engineering: SI Edition, 2nd ed.; Cengage Learning: Noida, India, 2008; ISBN 9780495438502. [Google Scholar]
- Shettar, M.; Sharma, S.; Gowrishankar, M.C.; Vishwanatha, H.M.; Ranjan, R.; Doddapaneni, S. Individual and combined effects of reinforcements on fractured surface of artificially aged Al6061 hybrid composites. J. Compos. Sci. 2023, 7, 91. [Google Scholar] [CrossRef]
Composites Prepared | Short Name |
---|---|
LM4 + 1 wt.% TiB2 | L1TB |
LM4 + 1 wt.% Si3N4 | L1SN |
LM4 + 2 wt.% TiB2 | L2TB |
LM4 + 2 wt.% Si3N4 | L2SN |
LM4 + 3 wt.% TiB2 | L3TB |
LM4 + 3 wt.% Si3N4 | L3SN |
Material | AC | SSHT + 100 °C Peak-Aged | SSHT + 200 °C Peak-Aged | MSHT + 100 °C Peak-Aged | MSHT + 200 °C Peak-Aged |
---|---|---|---|---|---|
LM4 | 70 | 95 (13 h) | 89 (11.5 h) | 130 (16 h) | 116 (14 h) |
L1SN | 87 | 99 (10 h) | 94 (8 h) | 135 (12 h) | 120 (9.5 h) |
L2SN | 88 | 105 (9 h) | 100 (7.5 h) | 143 (11.5 h) | 125 (9 h) |
L3SN | 90 | 112 (8 h) | 103 (6.5 h) | 157 (10.5 h) | 135 (8.5 h) |
L1TB | 89 | 108 (11 h) | 100 (9.5 h) | 145 (14 h) | 126 (12 h) |
L2TB | 91 | 117 (10 h) | 107 (8.5 h) | 160 (12.5 h) | 140 (11.5 h) |
L3TB | 93 | 125 (9 h) | 115 (7.5 h) | 176 (11 h) | 155 (10.5 h) |
Material | AC Condition | Peak-Aged Condition | ||
---|---|---|---|---|
Displacement (mm) | Load (N) | Displacement (mm) | Load (N) | |
LM4 | 1.25 | 4834 | 1.935 | 6011 |
L3SN | 1.9 | 6482 | 2.0 | 7453 |
L3TB | 1.975 | 6992 | 2.22 | 8110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doddapaneni, S.; Sharma, S.; Chennegowda, G.M.; Shettar, M.; Hegde, A. Comparative Study on Mechanical Property and Fracture Behavior of Age-Hardened LM4 Monolithic Composites Reinforced with TiB2 and Si3N4. Materials 2023, 16, 3965. https://doi.org/10.3390/ma16113965
Doddapaneni S, Sharma S, Chennegowda GM, Shettar M, Hegde A. Comparative Study on Mechanical Property and Fracture Behavior of Age-Hardened LM4 Monolithic Composites Reinforced with TiB2 and Si3N4. Materials. 2023; 16(11):3965. https://doi.org/10.3390/ma16113965
Chicago/Turabian StyleDoddapaneni, Srinivas, Sathyashankara Sharma, Gowrishankar Mandya Chennegowda, Manjunath Shettar, and Ananda Hegde. 2023. "Comparative Study on Mechanical Property and Fracture Behavior of Age-Hardened LM4 Monolithic Composites Reinforced with TiB2 and Si3N4" Materials 16, no. 11: 3965. https://doi.org/10.3390/ma16113965
APA StyleDoddapaneni, S., Sharma, S., Chennegowda, G. M., Shettar, M., & Hegde, A. (2023). Comparative Study on Mechanical Property and Fracture Behavior of Age-Hardened LM4 Monolithic Composites Reinforced with TiB2 and Si3N4. Materials, 16(11), 3965. https://doi.org/10.3390/ma16113965