Critical Evaluation and Thermodynamic Re-Optimization of the Si–P and Si–Fe–P Systems
Abstract
:1. Introduction
2. Thermodynamic Models
2.1. Gas Phase
2.2. Pure Elements and Stoichiometric Compounds
2.3. Solid Solutions
2.3.1. FCC_A1 and Solid Si Solutions
2.3.2. Disordered/Ordered BCC Solid Solution
2.3.3. Other Solid Solutions (Me3P, Me2P, MeP)
2.4. Liquid Solution
3. Critical Evaluation and Thermodynamic Optimization
3.1. The Si–P System
3.1.1. Phase Diagram
3.1.2. Thermodynamic Stability of Si Phosphides
3.1.3. Thermodynamic Properties of the Si–P Liquid Solution
3.2. The Fe–P and Fe–Si Systems
3.3. The Si–Fe–P Systems
3.3.1. Phase Diagram
3.3.2. Thermodynamic Properties of the Si–Fe–P Liquid Solution
3.3.3. Predicted Phase Diagram of the Si–Fe–P System
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Li, C. Silicon Based Photovoltaic Materials. In Eco- and Renewable Energy Material, 1st ed.; Zhou, Y., Ed.; Science Press Beijing: Beijing, China, 2013; pp. 1–23. [Google Scholar]
- Morita, K.; Miki, T. Thermodynamics of Solar-Grade-Silicon Refining. Intermetallics 2003, 11, 1111–1117. [Google Scholar] [CrossRef]
- Yuge, N.; Abe, M.; Hanazawa, K.; Baba, H.; Nakamura, N.; Kato, Y.; Sakaguchi, S.; Aratani, F. Purification of Metallurgical-Grade Silicon up to Solar Grade. Prog. Photovolt. Res. Appl. 2001, 9, 203–209. [Google Scholar] [CrossRef]
- Safarian, J.; Tangstad, M. Kinetics and Mechanism of Phosphorus Removal from Silicon in Vacuum Induction Refining. High Temp. Mater. Proc. 2012, 31, 73–81. [Google Scholar] [CrossRef]
- Jiang, D.; Ren, S.; Shi, S.; Dong, W.; Qiu, J.; Tan, Y.; Li, J. Phosphorus Removal from Silicon by Vacuum Refining and Directional Solidification. J. Electron. Mater. 2014, 43, 314–319. [Google Scholar] [CrossRef]
- Li, P.; Wang, Z.; Shi, S.; Ren, S.; Jiang, D.; Li, J.; Noor, H.M.; Asghar, H.K.; Tan, Y. Distribution of Phosphorus in n-type Multicrystalline Silicon Produced by Directional Solidification. IEEE J. Photovolt. 2018, 8, 1486–1493. [Google Scholar] [CrossRef]
- Johnston, M.D.; Barati, M. Distribution of Impurity Elements in Slag–Silicon Equilibria for Oxidative Refining of Metallurgical Silicon for Solar Cell Applications. Sol. Energy Mater. Sol. Cells 2010, 94, 2085–2090. [Google Scholar] [CrossRef]
- Jung, E.J.; Moon, B.M.; Min, D.J. Quantitative Evaluation for Effective Removal of Phosphorus for SoG-Si. Sol. Energy Mater. Sol. Cells 2011, 95, 1779–1784. [Google Scholar] [CrossRef]
- Li, M.; Utigard, T.; Barati, M. Removal of Boron and Phosphorus from Silicon using CaO-SiO2-Na2O-Al2O3 Flux. Metall. Mater. Trans. B 2014, 45, 221–228. [Google Scholar] [CrossRef]
- Dong, W.; Wang, Q.; Peng, X.; Tan, Y.; Jiang, D.C. Removal of Phosphorus in Metallurgical Grade Silicon Using Electron Beam Melting. Mater. Sci. Forum 2011, 675, 45–48. [Google Scholar] [CrossRef]
- Tan, Y.; Guo, X.; Shi, S.; Dong, W.; Jiang, D. Study on the Removal Process of Phosphorus from Silicon by Electron Beam Melting. Vacuum 2013, 93, 65–70. [Google Scholar] [CrossRef]
- Khajavi, L.T.; Barati, M. Thermodynamics of Phosphorus in Solvent Refining of Silicon Using Ferrosilicon Alloys. Metall. Mater. Trans. B 2017, 48, 268–275. [Google Scholar] [CrossRef]
- Spencer, P.; Kubaschewski, O. A Thermodynamic Assessment of the Fe-P System. Arch. Eisenhuettenwes. 1978, 49, 225–228. [Google Scholar]
- Gustafson, P. Internal Report IM-2549; Swedish Institue for Metals Research: Stockholm, Sweden, 1990. [Google Scholar]
- Shim, J.H.; Oh, C.S.; Lee, D.N. Thermodynamic Properties and Calculation of Phase Diagram of the Fe-P System. J. Korean. Inst. Met. Mater. 1996, 34, 1385–1393. [Google Scholar]
- Ohtani, H.; Hanaya, N.; Hasebe, M.; Teraoka, S.I.; Abe, M. Thermodynamic Analysis of the Fe-Ti-P Ternary System by Incorporating First-Principles Calculations into the CALPHAD Approach. CALPHAD 2006, 30, 147–158. [Google Scholar] [CrossRef]
- Cao, Z.M.; Wang, K.P.; Qiao, Z.Y.; Du, G.W. Thermodynamic Reoptimization of the Fe-P System. Acta Phys. Chim. Sinica 2012, 28, 37–43. [Google Scholar]
- Cao, Z.M.; Xie, W.; Wang, K.P.; Niu, C.J.; Du, G.W.; Qiao, Z.Y. Thermodynamic Optimization of the Al-Fe-P Ternary System. Acta Phys. Chim. Sinica 2013, 29, 2148–2156. [Google Scholar]
- Bernhard, M.; Kang, Y.B.; Presoly, P.; Gheribi, A.E.; Bernhard, C. Critical Evaluation and Thermodynamic Modeling of the Fe-P and Fe-C-P System. CALPHAD 2020, 70, 101795. [Google Scholar] [CrossRef]
- Schürmann, E.; Hensgen, U. Studies of the Melting Equilibria in the System Iron-Silicon. Arch. Eisenhuettenwes. 1980, 51, 1–4. [Google Scholar]
- Lee, B.J.; Lee, S.K.; Lee, D.N. Formulation of the A2/B2/D03 Atomic Ordering Energy and a Thermodynamic Analysis of the Iron-Silicon System. CALPHAD 1987, 11, 253–270. [Google Scholar] [CrossRef]
- Lacaze, J.; Sundman, B. An Assessment of the Iron-Carbon-Silicon System. Metall. Trans. A 1991, 22, 2211–2223. [Google Scholar] [CrossRef]
- Miettinen, J. Reassessed Thermodynamic Solution Phase Data for Ternary Fe-Si-C System. CALPHAD 1998, 22, 231–256. [Google Scholar] [CrossRef]
- Liang, Y.F.; Shang, S.L.; Wang, J.Y.; Ye, F.; Lin, J.P.; Chen, G.L.; Liu, Z.K. First-principles Calculations of Phonon and Thermodynamic Properties of Fe-Si Compounds. Intermetallics 2011, 19, 1374–1384. [Google Scholar] [CrossRef]
- Tang, K.; Tangstad, M. A Thermodynamic Description of the Si-rich Si-Fe System. Acta Metall. Sin. 2012, 25, 249–255. [Google Scholar]
- Ohnuma, I.; Abe, S.; Shimenouchi, S.; Omori, T.; Kainuma, R.; Ishida, K. Experimental and Thermodynamic Studies of the Fe-Si Binary System. ISIJ Int. 2012, 52, 540–548. [Google Scholar] [CrossRef]
- Yuan, Y.; Pan, F.; Li, D.; Watson, A. The Re-assessment of the Mg-Zn and Fe-Si Systems and Their Incorporation in Thermodynamic Descriptions of the Al-Mg-Zn and Fe-Si-Zn Systems. CALPHAD 2014, 44, 54–61. [Google Scholar] [CrossRef]
- You, Z.M.; Jung, I.H. Critical Evaluation and Optimization of the Fe-P System. Metall. Mater. Trans. B 2020, 51B, 3108–3129. [Google Scholar] [CrossRef]
- Cui, S.L.; Jung, I.H. Critical Reassessment of the Fe-Si System. CALPHAD 2017, 56, 108–125. [Google Scholar] [CrossRef]
- Jung, I.H.; Zhang, Y.M. Thermodynamic Calculations for the Dephosphorization of Silicon Using Molten Slag. JOM 2012, 64, 973–981. [Google Scholar] [CrossRef]
- Liang, S.M.; Schmid-Fetzer, R. Modeling of Thermodynamic Properties and Phase Equilibria of the Si-P System. J. Phase Equilib. Diffu. 2014, 35, 24–35. [Google Scholar] [CrossRef]
- Yan, W.; Yang, Y.D.; Chen, W.Q.; Barati, M.; McLean, A. Thermodynamic Assessment of Si-P and Si-Fe-P Alloys for Solar Grade Silicon Refining via Vacuum Levitation. Vacuum 2017, 135, 101–108. [Google Scholar] [CrossRef]
- Miettinen, J.; Vassilev-Urumov, G. Thermodynamic Description of Ternary Fe-X-P Systems. Part 8: Fe-Si-P. J. Phase Equilib. Duffu. 2016, 37, 540–547. [Google Scholar] [CrossRef]
- Bale, W.; Chartrand, P.; Degterov, S.A.; Eriksson, G.; Hack, K.; Mahfoud, R.B.; Petersen, S. FactSage Thermochemical Software and Databases. CALPHAD 2002, 26, 189–228. [Google Scholar] [CrossRef]
- Dinsdale, T. SGTE Data for Pure Elements. CALPHAD 1991, 15, 317–425. [Google Scholar] [CrossRef]
- Inden, G. Project Meeting CALPHAD V; Max-Planck-Inst, Eisenforschung: Dusseldorf, Germany, 1976; p. 111. [Google Scholar]
- Hillert, M.; Jarl, M. A Model for Alloying in Ferromagnetic Metals. CALPHAD 1978, 2, 227–238. [Google Scholar] [CrossRef]
- Hillert, M. The Compound Energy Formalism. J. Alloys Compd. 2001, 320, 161–176. [Google Scholar] [CrossRef]
- Pelton, A.D.; Degterov, S.A.; Eriksson, G.; Robelin, C.; Dessureault, Y. The Modified Quasichemical Model I-Binary Solutions. Metall. Mater. Trans. B 2000, 31, 651–659. [Google Scholar] [CrossRef]
- Pelton, A.D.; Chartrand, P. The Modified Quasi-chemical Model: Part II. Multicomponent Solutions. Metall. Mater. Trans. A 2001, 32, 1355–1360. [Google Scholar] [CrossRef]
- Huang, W. An Assessment of the Fe-Mn System. CALPHAD 1989, 13, 243–252. [Google Scholar] [CrossRef]
- Mostafa, A.; Medraj, M. Binary Phase Diagrams and Thermodynamic Properties of Silicon and Essential Doping Elements (Al, As, B, Bi, Ga, In, N, P, Sb and Tl). Materials 2017, 10, 676. [Google Scholar] [CrossRef]
- Giessen, V.B.; Vogel, R. The Silicon-Phosphorous System. Z. Metallkd. 1959, 50, 274–277. [Google Scholar]
- Trumbore, F.A. Solid Solubilities of Impurity Elements Germanium and Silicon. Bell Syst. Technol. J. 1960, 39, 205–233. [Google Scholar] [CrossRef]
- Abrikosov, N.K.; Glazov, V.M.; Liu, C.Y. Individual and Joint Solubilities of Aluminium and Phosphorus in Germanium and Silicon. Russ. J. Inorg. Chem. 1962, 7, 429–431. [Google Scholar]
- Kooi, E. Formation and Composition of Surface Layers and Solubility Limits of Phosphorus during Diffusion in Silicon. J. Electrochem. Soc. 1964, 111, 1383–1387. [Google Scholar] [CrossRef]
- Yoshida, M.; Arai, E.; Nakamura, H.; Terunuma, Y. Excess Vacancy Generation Mechanism at Phosphorus Diffusion into Silicon. J. Appl. Phys. 1974, 45, 1498–1506. [Google Scholar] [CrossRef]
- Tamura, M. Dislocation Networks in Phosphorus-Implanted Silicon. Philos. Mag. 1977, 35, 663–691. [Google Scholar]
- Uda, K.; Kamoshida, M. Annealing Characteristics of Highly P+-Ion-Implanted Silicon Crystal—Two-Step Anneal. J. Appl. Phys. 1977, 48, 18–21. [Google Scholar] [CrossRef]
- Fogarassy, E.; Stuck, R.; Muller, J.C.; Grob, A.; Grob, J.J.; Siffert, P. Effects of Laser Irradiation on Phosphorus Diffused Layers in Silicon. J. Electron. Mater. 1980, 9, 197–209. [Google Scholar] [CrossRef]
- Nobili, D.; Armigliato, A.; Finnetti, M.; Solmi, S. Precipitation as the Phenomenon Responsible for the Electrically Inactive Phosphorus in Silicon. J. Appl. Phys. 1982, 53, 1484–1491. [Google Scholar] [CrossRef]
- Borisenko, V.E.; Yudin, S.G. Steady-State Solubility of Substitutional Impurities in Silicon. Phys. Stat. Solidi. 1987, 101, 123–127. [Google Scholar] [CrossRef]
- Solmi, S.; Parisini, A.; Angelucci, R.; Armigliato, A.; Nobili, D.; Moro, L. Dopant and Carrier Concentration in Si in Equilibrium with Monoclinic SiP Precipitates. Phys. Rev. B Condens. Matter. 1996, 53, 7836–7841. [Google Scholar] [CrossRef]
- Safarian, J.; Tangstad, M. Phase Diagram Study of the Si-P System in Si-Rich Region. J. Mater. Res. 2011, 26, 1494–1503. [Google Scholar] [CrossRef]
- Ugai, Y.A.; Semenova, G.V.; Sokolov, L.I.; Goncharov, E.G. Thermal Dissociation of Silicon Monophosphide. Russ. J. Inorg. Chem. 1987, 32, 875–877. [Google Scholar]
- Hall, R.N. Segregation of Impurities during the Growth of Germanium and Silicon. J. Phys. Chem. 1953, 57, 836–839. [Google Scholar] [CrossRef]
- Struthers, J.D.; (cited in Trumbore, F.A. Solid Solubilities of Impurity Elements Germanium and Silicon. Bell Syst. Technol. J. 1960, 39, 205–233). Personal communication, 1960.
- Burton, J.A. Impurity Centers in Ge and Si. Physica 1954, 20, 845–854. [Google Scholar] [CrossRef]
- James, J.A.; Richaeds, D. Radiochemical Analysis of Silicon. Int. J. Electron. 1957, 3, 500–506. [Google Scholar] [CrossRef]
- Davis, J.R.; Rohatgi, A.; Hopkins, R.H.; Blais, P.D.; Rai-Choudhury, P.; Mccormick, J.R.; Mollenkopf, H.C. Impurities in Silicon Solar Cells. IEEE Trans. Electron Devices 1980, 27, 677–687. [Google Scholar] [CrossRef]
- Bathey, B.R.; Cretella, M.C. Solar-Grade Silicon. J. Mater. Sci. 1982, 17, 3077–3096. [Google Scholar] [CrossRef]
- Huff, H.R.; Digges, T.G.; Cecil, O.B. Distribution Coefficient of Boron and Phosphorus in Silicon. J. Appl. Phys. 1971, 42, 1235–1236. [Google Scholar] [CrossRef]
- Ugai, Y.A.; Demidenko, A.F.; Koshchenko, V.I.; Yachmenev, V.E.; Sokolov, L.I.; Goncharov, E.G. Thermodynamic Properties of Silicon and Germanium Mono-Phosphides. Inorg. Mater. 1979, 15, 578–581. [Google Scholar]
- Biltz, W.; Hartmann, H.; Wrigge, F.; Wiechmann, F. The Systematic Study of Affinity. LXXX. Silicon Phosphide. Sitzber. Preuss. Akad. Wiss. Phys. Math. Klasse 1938, 7, 99–110. [Google Scholar]
- Korb, J.; Hein, K. Vapor-Pressure Investigations in System Zn-Si-P. Z. Anorg. Allg. Chem. 1976, 425, 281–288. [Google Scholar] [CrossRef]
- Miki, T.; Morita, K.; Sano, N. Thermodynamics of Phosphorus in Molten Silicon. Metall. Mater. Trans. B 1996, 27, 937–941. [Google Scholar] [CrossRef]
- Zaitsev, A.; Shelkova, N.; Kodentsov, A. Thermodynamic Properties and Phase Equilibria in the Silicon-Phosphorous System. J. Phase Equilib. 2000, 21, 528–533. [Google Scholar] [CrossRef]
- Leitão, J.V.; You, X.; Caron, L.; Brück, E. Magnetostructural Study of the (Mn, Fe)3(P, Si) System. J. Alloys Compd. 2012, 520, 52–58. [Google Scholar] [CrossRef]
- Miao, X.; Wang, W.; Liang, H.; Qian, F.; Cong, M.; Zhang, Y.; Muhammad, A.; Tian, Z.; Xu, F. Printing (Mn, Fe)2(P, Si) Magnetocaloric Alloys for Magnetic Refrigeration Applications. J. Mater. Sci. 2020, 55, 6660–6668. [Google Scholar] [CrossRef]
- Zhang, F.; Taake, C.; Huang, B.; You, X.; Ojiyed, H.; Shen, Q.; Dugulan, L.; Caron, L.; Van Dijk, N.; Brück, E. Magnetocaloric Effect in the (Mn, Fe)2(P, Si) System: From Bulk to Nano. Acta Mater. 2022, 224, 117532. [Google Scholar] [CrossRef]
- Vogel, R.; Giessen, B. The Iron-Phosphorus-Silicon System. Arch. Eisenhuettenwes. 1959, 30, 619–626. [Google Scholar]
- Coquil, G.; Fullenwarth, J.; Grinbom, G.; Sougrati, M.T.; Stievano, L.; Zitoun, D.; Monconduit, L. FeSi4P4: A Novel Negative Electrode with Atypical Electrochemical Mechanism for Li and Na-ion Batteries. J. Power Sources 2017, 372, 196–203. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, J.; Luo, Y.; Miao, L.; Yan, Y.; Xue, L.; Zhang, W. Facile Synthesis of FeSi4P4 and Its Sodium Ion Storage Performance. Electrochim. Acta 2017, 247, 820–825. [Google Scholar] [CrossRef]
- Hummitzsch, W.; Sauerwald, F. Multicomponent Systems Involving Iron III The System Iron-Phosphorus-Silicon. Z. Anorg. Allg. Chem. 1930, 194, 113–138. [Google Scholar] [CrossRef]
- Kaneko, H.; Nishizawa, T.; Tamaki, K.; Tanifuji, A. Solubility of Phosphorus in α and γ-Iron. Nippon Kinzoku Gakkai-Si 1965, 29, 166–170. [Google Scholar]
- Kaneko, H. Phosphide-Phases in Ternary Alloys of Iron, Phosphorus and Other Elements. J. Jap. Inst. Metals 1965, 29, 159–165. [Google Scholar] [CrossRef]
- Ueda, S.; Morita, K.; Sano, N. Thermodynamics of Phosphorus in Molten Si-Fe and Si-Mn Alloys. Metall. Mater. Trans. B 1997, 28B, 1151–1155. [Google Scholar] [CrossRef]
- Yamada, K.; Kato, E. Effect of Dilute Concentrations of Si, Al, Ti, V, Cr, Co, Ni, Nb and Mo on the Activity Coefficient of P in Liquid Iron. Trans. Iron Steel Ins. Jpn. 1983, 23, 51–55. [Google Scholar] [CrossRef]
- Ban-ya, S.; Maruyama, N.; Fujino, S. The Effects of C, Si, Al, and B on the Activity of Phosphorus in Liquid Iron. Tetsu-to-Hagané 1983, 69, 921–928. [Google Scholar] [CrossRef]
- Schenck, H.; Steinmetz, E.; Gohlke, R. Controlling the Activity of Phosphorus in Molten Iron by Means of Carbon and Silicon. Arch. Eisenhuettenwes. 1968, 2, 109–111. [Google Scholar]
Phase | Model Parameters |
---|---|
Liquid (Si, Fe, P) | [28,29] |
[28,29,30] [28] [28] [*] [29] [*], [*], [*] | |
“Toop-like” interpolation with Fe as an asymmetric component [*] | |
FCC_A1 (Si, Fe, P)1(Va)1 | , , [*] [28] [*] [29] , [41] |
BCC_A2 (Si, Fe, P)1(Va)3 | , , [*] |
[28] | |
[*] | |
[29] [28], [29] , [41] | |
BCC_B2 (Si, Fe, P)0.5(Si, Fe, P)0.5(Va)3 | [29] [29] [*] [29] [28] |
[*] [*] | |
Diamond_A4 Si (Si, Fe, P)1(Va)1 | [29], [29] [*] [*] [29] |
Me3P (Fe)3(P, Si)1 | [28] [*] [*] |
Me2P (Fe)2(P, Si)1 | [28] [*] [*] |
MeP (Fe)1(P, Si)1 | [28] [*] [*] |
FeP2 (Fe)1(P)2 | , [28] [28] |
SiP (Si)1(P)1 | [*], [*] [30] |
SiP2 (Si)1(P)2 | [*], [*] [30] |
Fe2Si (Fe)2(Si) | [29], [29] [29] |
Fe5Si3 (Fe)5(Si)3 | [29], [29] [29] [29], [29], [29] |
FeSi (Fe)1(Si)1 | [29], [29] [29] |
FeSi2 (Fe)1(Si)2 | [29], [29] [29] |
Fe3Si7 (Fe)3(Si)7 | [29], [29] [29] |
FeSi4P4 (Fe)1(Si)4(P)4 | [*], [*] [*] |
Phase | Structure | Prototype | Space Group | Pearson Symbol |
---|---|---|---|---|
FCC_A1 | Cubic | Cu | mm | cF4 |
BCC_A2 | Cubic | W | Imm | cI2 |
BCC_B2 | Cubic | CsCl | Pmm | cP8 |
Diamond_A4 Si | Cubic | C(dia.) | Fdm | cF8 |
Me3P | Tetragonal | Ni3P | I | tI32 |
Me2P | Hexagonal | Fe2P | P2m | hP9 |
MeP | Orthorhombic | MnP | Pnma | oP8 |
FeP2 | Orthorhombic | FeS2 | Pnnm | oP6 |
SiP | Orthorhombic | SiP | Cmc21 | oS24 |
SiP2 | Orthorhombic | GeAs2 | Pbam | oP24 |
Fe2Si | Cubic | CsCl | Pmm | cP2 |
Fe5Si3 | Hexagonal | Mn5Si3 | P63/mcm | hP16 |
FeSi | Cubic | FeSi | P213 | cP8 |
FeSi2 | Orthorhombic | FeSi2 | Cmca | oC48 |
Fe3Si7 | Tetragonal | Fe3Si7 | P4/mmm | tP3 |
FeSi4P4 | Triclinic | FeSi4P4 | P1 | --- |
White P | Cubic | P4 | I3m | C*8 |
Red P | --- | P | --- | C*66 |
Code | Invariant Reactions | Wt.%Fe | Wt.%Si | Wt.%P | T, K |
---|---|---|---|---|---|
E1 | 71.93 | 9.90 | 18.17 | 1438 [*] | |
71.00 | 14.00 | 15.00 | 1439 [71] | ||
E2 | 48.58 | 29.38 | 22.04 | 1366 [*] | |
47.10 | 34.00 | 18.90 | 1368 [71] | ||
E3 | (s) | 43.37 | 38.99 | 17.64 | 1371 [*] |
46.00 | 36.40 | 17.60 | 1369 [71] | ||
E4 | 2.55 | 61.63 | 35.82 | 1400 [*] | |
6.00 | 61.50 | 32.50 | 1389 [71] | ||
E5 | (s) | 3.92 | 38.57 | 57.51 | 1428 [*] |
E6 | 84.93 | 7.84 | 7.23 | 1335 [*] | |
E7 | 81.01 | 14.19 | 4.80 | 1358 [*] | |
E8 | 0.075 | 0.005 | 99.92 | 852 [*] | |
U1 | (s) | 34.87 | 47.28 | 17.85 | 1383 [*] |
EX | 33.50 | 49.20 | 17.30 | 1386 [71] | |
U2 | 80.03 | 15.21 | 4.76 | 1365 [*] | |
U3 | 86.54 | 5.92 | 7.54 | 1342 [*] | |
39.22 | 12.97 | 47.81 | 1410 [*] | ||
U5 | 19.77 | 5.32 | 74.91 | 1336 [*] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Z.; Zhang, H.; Cui, S.; Jiang, Z.; Jung, I.-H. Critical Evaluation and Thermodynamic Re-Optimization of the Si–P and Si–Fe–P Systems. Materials 2023, 16, 4099. https://doi.org/10.3390/ma16114099
You Z, Zhang H, Cui S, Jiang Z, Jung I-H. Critical Evaluation and Thermodynamic Re-Optimization of the Si–P and Si–Fe–P Systems. Materials. 2023; 16(11):4099. https://doi.org/10.3390/ma16114099
Chicago/Turabian StyleYou, Zhimin, Hao Zhang, Senlin Cui, Zhouhua Jiang, and In-Ho Jung. 2023. "Critical Evaluation and Thermodynamic Re-Optimization of the Si–P and Si–Fe–P Systems" Materials 16, no. 11: 4099. https://doi.org/10.3390/ma16114099
APA StyleYou, Z., Zhang, H., Cui, S., Jiang, Z., & Jung, I. -H. (2023). Critical Evaluation and Thermodynamic Re-Optimization of the Si–P and Si–Fe–P Systems. Materials, 16(11), 4099. https://doi.org/10.3390/ma16114099