Research Progress in Preparation, Properties and Applications of Biomimetic Organic-Inorganic Composites with “Brick-and-Mortar” Structure
Abstract
:1. Introduction
2. Raw Materials
2.1. Inorganic Raw Material
2.1.1. Montmorillonite
2.1.2. Graphene Oxide
2.1.3. MXene
2.2. Organic Raw Material
2.2.1. Polyvinyl Alcohol (PVA)
2.2.2. Cellulose and Its Derivatives
3. Strategies
3.1. Layer-By-Layer Assembly
3.2. Vacuum Filtration
3.3. Freeze Casting
3.4. Other Methods
4. Interfacial Forces
4.1. Non-Covalent Bonds
4.1.1. Hydrogen Bonds
4.1.2. Ionic Bonds
4.1.3. π-π Bonds
4.2. Covalent Bonds
5. Properties and Application
5.1. Light Weight and High Strength
5.2. Flame Retardant
5.3. Responsive
5.4. Electromagnetic Shielding
5.5. Anti-Corrosion
5.6. Other
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, H.; Ji, B.; Jäger, I.L.; Arzt, E.; Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. USA 2003, 100, 5597–5600. [Google Scholar] [CrossRef] [PubMed]
- Barthelat, F. Biomimetics for next generation materials. Phil. Trans. R. Soc. A 2007, 365, 2907–2919. [Google Scholar] [CrossRef]
- Heinemann, F.; Launspach, M.; Gries, K.; Fritz, M. Gastropod nacre: Structure, properties and growth—Biological, chemical and physical basics. Biophys. Chem. 2011, 153, 126–153. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Walsh, F.; Gludovatz, B.; Delattre, B.; Huang, C.; Chen, Y.; Tomsia, A.P.; Ritchie, R.O. Bioinspired Hydroxyapatite/Poly(methyl methacrylate) Composite with a Nacre-Mimetic Architecture by a Bidirectional Freezing Method. Adv. Mater. 2016, 28, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Gupta, H.S. Deformation and fracture mechanisms of bone and nacre. In Annual Review of Materials Research, Vol. 41; Clarke, D.R., Fratzl, P., Eds.; Annual Reviews: Palo Alto, CA, USA, 2011; Volume 41, pp. 41–73. ISBN 978-0-8243-1741-6. [Google Scholar]
- Yao, N.; Epstein, A.K.; Liu, W.W.; Sauer, F.; Yang, N. Organic–inorganic interfaces and spiral growth in nacre. J. R. Soc. Interface 2008, 6, 367–376. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.-H.; Wang, R. In Situ Observation of Nanograin Rotation and Deformation in Nacre. Nano Lett. 2006, 6, 2301–2304. [Google Scholar] [CrossRef]
- Xu, Z.-H.; Li, X. Deformation Strengthening of Biopolymer in Nacre. Adv. Funct. Mater. 2011, 21, 3883–3888. [Google Scholar] [CrossRef]
- Wu, K.; Song, Y.; Zhang, X.; Zhang, S.; Zheng, Z.; Gong, X.; He, L.; Yao, H.-B.; Ni, Y. A Prestressing Strategy Enabled Synergistic Energy-Dissipation in Impact-Resistant Nacre-Like Structures. Adv. Sci. 2022, 9, 2104867. [Google Scholar] [CrossRef]
- Tan, G.; Yu, Q.; Liu, Z.; Wang, X.; Zhang, M.; Liu, Y.; Zhang, Z.; Ritchie, R.O. Compression fatigue properties and damage mechanisms of a bioinspired nacre-like ceramic-polymer composite. Scr. Mater. 2021, 203, 114089. [Google Scholar] [CrossRef]
- Zhou, L.; He, Z.; Zhang, Z.; Zhu, Y.; Wu, H. Maximum utilization of nacre-mimetic composites by architecture manipulation and interface modification towards critical damage state. Compos. Sci. Technol. 2023, 233, 109893. [Google Scholar] [CrossRef]
- Tan, G.; Zhang, J.; Zheng, L.; Jiao, D.; Liu, Z.; Zhang, Z.; Ritchie, R.O. Nature-Inspired Nacre-Like Composites Combining Human Tooth-Matching Elasticity and Hardness with Exceptional Damage Tolerance. Adv. Mater. 2019, 31, 1904603. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Huang, C.; Cao, C.; Saiz, E.; Du, Y.; Dou, S.; Tomsia, A.P.; Wagner, H.D.; Jiang, L.; Cheng, Q. Inverse Nacre-like Epoxy-Graphene Layered Nanocomposites with Integration of High Toughness and Self-Monitoring. Matter 2020, 2, 220–232. [Google Scholar] [CrossRef]
- Sarikaya, M.; Gunnison, K.E.; Yasrebi, M.; Aksay, I.A. Mechanical property-microstructural relationships in abalone shell. MRS Online Proc. Libr. 1989, 174, 109–116. [Google Scholar] [CrossRef]
- Lin, W.; Wang, C.; Le, H.; Long, B.; Huang, Y. Special assembly of laminated nanocomposite that mimics nacre. Mater. Sci. Eng. C Biomim. Supramol. Syst. 2008, 28, 1031–1037. [Google Scholar] [CrossRef]
- Putz, K.W.; Compton, O.C.; Segar, C.; An, Z.; Nguyen, S.T.; Brinson, L.C. Evolution of Order During Vacuum-Assisted Self-Assembly of Graphene Oxide Paper and Associated Polymer Nanocomposites. ACS Nano 2011, 5, 6601–6609. [Google Scholar] [CrossRef]
- Du, F.; Alghamdi, S.; Yang, J.; Huston, D.; Tan, T. Interfacial Mechanical Behavior in Nacre of Red Abalone and Other Shells: A Review. ACS Biomater. Sci. Eng. 2022. [Google Scholar] [CrossRef] [PubMed]
- Cilento, F.; Martone, A.; Giordano, M. Insights on Shear Transfer Efficiency in “Brick-and-Mortar” Composites Made of 2D Carbon Nanoparticles. Nanomaterials 2022, 12, 1359. [Google Scholar] [CrossRef] [PubMed]
- Dal Poggetto, V.F. Bioinspired acoustic metamaterials: From natural designs to optimized structures. Front. Mater. 2023, 10, 1176457. [Google Scholar] [CrossRef]
- Dai, H.; Dai, W.; Hu, Z.; Zhang, W.; Zhang, G.; Guo, R. Advanced Composites Inspired by Biological Structures and Functions in Nature: Architecture Design, Strengthening Mechanisms, and Mechanical-Functional Responses. Adv. Sci. 2023, 10, 2207192. [Google Scholar] [CrossRef]
- Chen, Q.; Ma, Z.; Wang, M.; Wang, Z.; Feng, J.; Chevali, V.; Song, P. Recent advances in nacre-inspired anisotropic thermally conductive polymeric nanocomposites. Nano Res. 2023, 16, 1362–1386. [Google Scholar] [CrossRef]
- Hao, J.; Wang, W.; Zhao, J.; Che, H.; Chen, L.; Sui, X. Construction and application of bioinspired nanochannels based on two-dimensional materials. Chin. Chem. Lett. 2022, 33, 2291–2300. [Google Scholar] [CrossRef]
- Ingrole, A.; Aguirre, T.G.; Fuller, L.; Donahue, S.W. Bioinspired energy absorbing material designs using additive manufacturing. J. Mech. Behav. Biomed. Mater. 2021, 119, 104518. [Google Scholar] [CrossRef] [PubMed]
- Plocher, J.; Mencattelli, L.; Narducci, F.; Pinho, S. Learning from nature: Bio-inspiration for damage-tolerant high-performance fibre-reinforced composites. Compos. Sci. Technol. 2021, 208, 108669. [Google Scholar] [CrossRef]
- Doineau, E.; Cathala, B.; Benezet, J.-C.; Bras, J.; Le Moigne, N. Development of Bio-Inspired Hierarchical Fibres to Tailor the Fibre/Matrix Interphase in (Bio)composites. Polymers 2021, 13, 804. [Google Scholar] [CrossRef] [PubMed]
- Shahsavari, R.; Hwang, S.H. Bioinspired Cementitious Materials: Main Strategies, Progress, and Applications. Front. Mater. 2020, 7, 62. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, H.; Yu, H. Bioinspired strategies for making superior graphene composite coatings. Chem. Eng. J. 2022, 435, 134808. [Google Scholar] [CrossRef]
- Naveen, J.; Jawaid, M.; Goh, K.L.; Reddy, D.M.; Muthukumar, C.; Loganathan, T.M.; Reshwanth, K.N.G.L. Advancement in Graphene-Based Materials and Their Nacre Inspired Composites for Armour Applications—A Review. Nanomaterials 2021, 11, 1239. [Google Scholar] [CrossRef]
- Deville, S.; Tomsia, A.P.; Meille, S. Complex Composites Built through Freezing. Acc. Chem. Res. 2022, 55, 1492–1502. [Google Scholar] [CrossRef]
- Gao, W.; Wang, M.; Bai, H. A review of multifunctional nacre-mimetic materials based on bidirectional freeze casting. J. Mech. Behav. Biomed. Mater. 2020, 109, 103820. [Google Scholar] [CrossRef]
- Shao, G.; Hanaor, D.A.H.; Shen, X.; Gurlo, A. Freeze Casting: From Low-Dimensional Building Blocks to Aligned Porous Structures—A Review of Novel Materials, Methods, and Applications. Adv. Mater. 2020, 32, 1907176. [Google Scholar] [CrossRef]
- Lossada, F.; Hoenders, D.; Guo, J.; Jiao, D.; Walther, A. Self-Assembled Bioinspired Nanocomposites. Acc. Chem. Res. 2020, 53, 2622–2635. [Google Scholar] [CrossRef]
- Khayrani, A.C.; Sambudi, N.S.; Wijaya, H.; Buys, Y.F.; Radini, F.A.; Jusoh, N.; Kamal, N.A.; Suhaimi, H. Review of Artificial Nacre for Oil–Water Separation. Separations 2023, 10, 205. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, K.; Zhang, H. Biomimetic Mineralization: From Microscopic to Macroscopic Materials and Their Biomedical Applications. ACS Appl. Bio Mater. 2023. [Google Scholar] [CrossRef]
- Peng, J.; Tomsia, A.P.; Jiang, L.; Tang, B.Z.; Cheng, Q. Stiff and tough PDMS-MMT layered nanocomposites visualized by AIE luminogens. Nat. Commun. 2021, 12, 4539. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Gu, L.; Zhang, Y.; Chen, H.; Jiang, B.; Zhao, H.; Jin, Y.; Xiao, H. Bioinspired self-assembled films of carboxymethyl cellulose–dopamine/montmorillonite. J. Mater. Chem. A 2019, 7, 14033–14041. [Google Scholar] [CrossRef]
- Rashid, A.; Haider, R.; Gill, R.; Batool, S.; Hu, Y. Nacre inspired tailoring of mechanically strong hydrophobic coatings through Layer-by-Layer assembly. Surf. Coat. Technol. 2020, 404, 126458. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, S.; Li, A.; Tang, X.; Li, L.; Guo, L. Bioinspired Interfacial Chelating-like Reinforcement Strategy toward Mechanically Enhanced Lamellar Materials. ACS Nano 2018, 12, 4269–4279. [Google Scholar] [CrossRef]
- Yu, C.-S.; Chen, S.-Y.; Lin, J.-S.; Chen, Y.-Y.; Huang, W.-C. Highly hydroresponsive nacre-like oligo proanthocyanidin-intercalated Ca-Al-Layered double hydroxides/graphene oxide/polyvinyl alcohol as a potential neural implant material. J. Mater. Res. Technol. JMRT 2021, 15, 595–605. [Google Scholar] [CrossRef]
- Chu, J.H.; Tong, L.B.; Wang, W.; Jiang, Z.H.; Sun, G.X.; Zou, D.N.; Wang, K.S.; Zhang, H.J. Sequentially bridged biomimetic graphene-based coating via covalent bonding with an effective anti-corrosion/wear protection for Mg alloy. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125707. [Google Scholar] [CrossRef]
- Shi, X.; Wang, H.; Xie, X.; Xue, Q.; Zhang, J.; Kang, S.; Wang, C.; Liang, J.; Chen, Y. Bioinspired Ultrasensitive and Stretchable MXene-Based Strain Sensor via Nacre-Mimetic Microscale “Brick-and-Mortar” Architecture. ACS Nano 2019, 13, 649–659. [Google Scholar] [CrossRef]
- Liu, S.; Wang, S.; Sang, M.; Zhou, J.; Zhang, J.; Xuan, S.; Gong, X. Nacre-Mimetic Hierarchical Architecture in Polyborosiloxane Composites for Synergistically Enhanced Impact Resistance and Ultra-Efficient Electromagnetic Interference Shielding. ACS Nano 2022, 16, 19067–19086. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-G.; Hu, Y.-J.; Peng, F.; Bian, J.; Li, M.-F.; Yao, C.-L.; Sun, R.-C. Fabrication of strong nanocomposite films with renewable forestry waste/montmorillonite/reduction of graphene oxide for fire retardant. Chem. Eng. J. 2018, 337, 436–445. [Google Scholar] [CrossRef]
- Kou, L.; Gao, C. Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers. Nanoscale 2013, 5, 4370–4378. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, H.; Ma, P.; Bai, H.; Chen, M.; Dong, W.; Xie, Y.; Deshmukh, Y.S. Superior Performance of Artificial Nacre Based on Graphene Oxide Nanosheets. ACS Appl. Mater. Interfaces 2017, 9, 4215–4222. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.-F.; Yang, H.-B.; Yin, C.-H.; Han, Z.-M.; Yang, K.-P.; Ling, Z.-C.; Yu, S.-H. Nacre-Inspired Sustainable Coatings with Remarkable Fire-Retardant and Energy-Saving Cooling Performance. ACS Mater. Lett. 2021, 3, 243–248. [Google Scholar] [CrossRef]
- Qiu, S.; Ren, X.; Zhou, X.; Zhang, T.; Song, L.; Hu, Y. Nacre-Inspired Black Phosphorus/Nanofibrillar Cellulose Composite Film with Enhanced Mechanical Properties and Superior Fire Resistance. ACS Appl. Mater. Interfaces 2020, 12, 36639–36651. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Erdem, T.; Eiser, E. A simple approach to prepare self-assembled, nacre-inspired clay/polymer nanocomposites. Soft Matter 2020, 16, 5497–5505. [Google Scholar] [CrossRef]
- Zhou, S.Q.; Niu, Y.Q.; Liu, J.H.; Chen, X.X.; Li, C.S.; Gates, W.P.; Zhou, C.H. Functional Montmorillonite/Polymer Coatings. Clays Clay Min. 2022, 70, 209–232. [Google Scholar] [CrossRef]
- Chen, X.X.; Liu, J.H.; Kurniawan, A.; Li, K.J.; Zhou, C.H. Inclusion of organic species in exfoliated montmorillonite nanolayers towards hierarchical functional inorganic–organic nanostructures. Soft Matter 2021, 17, 9819–9841. [Google Scholar] [CrossRef]
- Song, C.; Li, Y.; Luan, Y.; Liu, S.; Guo, Z.; Xu, F. Study on the strengthening and toughening design of the interlayer interface of GO-based bionic nacre composites and its optimization mechanisms. Compos. Sci. Technol. 2022, 223, 109423. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Iler, R.K. Multilayers of colloidal particles. J. Colloid Interface Sci. 1966, 21, 569–594. [Google Scholar] [CrossRef]
- Yaraghi, N.A.; Kisailus, D. Biomimetic Structural Materials: Inspiration from Design and Assembly. Annu. Rev. Phys. Chem. 2018, 69, 23–57. [Google Scholar] [CrossRef]
- Huang, C.; Cheng, Q. Learning from nacre: Constructing polymer nanocomposites. Compos. Sci. Technol. 2017, 150, 141–166. [Google Scholar] [CrossRef]
- Podsiadlo, P.; Kaushik, A.K.; Arruda, E.M.; Waas, A.M.; Shim, B.S.; Xu, J.; Nandivada, H.; Pumplin, B.G.; Lahann, J.; Ramamoorthy, A.; et al. Ultrastrong and stiff layered polymer nanocomposites. Science 2007, 318, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qiao, J.; Wang, J.; Zhu, Y.; Jiang, L. Bioinspired Hierarchical Alumina–Graphene Oxide–Poly(vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness. ACS Appl. Mater. Interfaces 2015, 7, 9281–9286. [Google Scholar] [CrossRef]
- Magrini, T.; Bouville, F.; Lauria, A.; Le Ferrand, H.; Niebel, T.P.; Studart, A.R. Transparent and tough bulk composites inspired by nacre. Nat. Commun. 2019, 10, 2794. [Google Scholar] [CrossRef]
- Wan, S.; Li, Y.; Peng, J.; Hu, H.; Cheng, Q.; Jiang, L. Synergistic Toughening of Graphene Oxide–Molybdenum Disulfide–Thermoplastic Polyurethane Ternary Artificial Nacre. ACS Nano 2015, 9, 708–714. [Google Scholar] [CrossRef]
- Macchetta, A.; Turner, I.G.; Bowen, C.R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater. 2009, 5, 1319–1327. [Google Scholar] [CrossRef]
- Deville, S.; Saiz, E.; Nalla, R.K.; Tomsia, A.P. Freezing as a Path to Build Complex Composites. Science 2006, 311, 515–518. [Google Scholar] [CrossRef]
- Munch, E.; Launey, M.E.; Alsem, D.H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Tough, Bio-Inspired Hybrid Materials. Science 2008, 322, 1516–1520. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Chen, Y.; Delattre, B.; Tomsia, A.P.; Ritchie, R.O. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 2015, 1, e1500849. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Yang, M.; Zhao, Q.; Gao, W.; Xie, T.; Bai, H. Superstretchable Nacre-Mimetic Graphene/Poly(vinyl alcohol) Composite Film Based on Interfacial Architectural Engineering. ACS Nano 2017, 11, 4777–4784. [Google Scholar] [CrossRef]
- Wilkerson, R.P.; Gludovatz, B.; Watts, J.; Tomsia, A.P.; Hilmas, G.E.; Ritchie, R.O. A Novel Approach to Developing Biomimetic (“Nacre-Like”) Metal-Compliant-Phase (Nickel–Alumina) Ceramics through Coextrusion. Adv. Mater. 2016, 28, 10061–10067. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, R.P.; Gludovatz, B.; Ell, J.; Watts, J.; Hilmas, G.E.; Ritchie, R.O. High-temperature damage-tolerance of coextruded, bioinspired (“nacre-like”), alumina/nickel compliant-phase ceramics. Scr. Mater. 2019, 158, 110–115. [Google Scholar] [CrossRef]
- Wilkerson, R.P.; Gludovatz, B.; Watts, J.; Tomsia, A.P.; Hilmas, G.E.; Ritchie, R.O. A study of size effects in bioinspired, “nacre-like”, metal-compliant-phase (nickel-alumina) coextruded ceramics. Acta Mater. 2018, 148, 147–155. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Chu, M.; Sun, H.; Jin, J.; Yu, K.; Wang, Q.; Zhou, Q.; Chen, Y. Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability. Sci. Adv. 2019, 5, eaau9490. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Jian, M.; Wang, C.; Liang, X.; Niu, J.; Zhang, Y. Spontaneous Alignment of Graphene Oxide in Hydrogel during 3D Printing for Multistimuli-Responsive Actuation. Adv. Sci. 2020, 7, 1903048. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Yu, T.; Yang, T.-Y.; Zheng, L.-X.; Liao, K. Bio-Inspired Nacre-like Composite Films Based on Graphene with Superior Mechanical, Electrical, and Biocompatible Properties. Adv. Mater. 2012, 24, 3426–3431. [Google Scholar] [CrossRef]
- Wan, S.; Hu, H.; Peng, J.; Li, Y.; Fan, Y.; Jiang, L.; Cheng, Q. Nacre-inspired integrated strong and tough reduced graphene oxide–poly(acrylic acid) nanocomposites. Nanoscale 2016, 8, 5649–5656. [Google Scholar] [CrossRef]
- Dikin, D.A.; Stankovich, S.; Zimney, E.J.; Piner, R.D.; Dommett, G.H.B.; Evmenenko, G.; Nguyen, S.T.; Ruoff, R.S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460. [Google Scholar] [CrossRef]
- Kang, D.; Cai, Z.; Jin, Q.; Zhang, H. Bio-inspired composite films with integrative properties based on the self-assembly of gellan gum-graphene oxide crosslinked nanohybrid building blocks. Carbon 2015, 91, 445–457. [Google Scholar] [CrossRef]
- Shu, Y.; Yin, P.; Liang, B.; Wang, S.; Gao, L.; Wang, H.; Guo, L. Layer by layer assembly of heparin/layered double hydroxide completely renewable ultrathin films with enhanced strength and blood compatibility. J. Mater. Chem. 2012, 22, 21667–21672. [Google Scholar] [CrossRef]
- Liang, B.; Shu, Y.; Yin, P.; Guo, L. Nacre-inspired polyglutamic acid/layered double hydroxide bionanocomposite film with high mechanical, translucence and UV-blocking properties. Chin. J. Polym. Sci. 2017, 35, 631–640. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, L.; Chen, J.; Li, C.; Shi, G. Ultratough, Ultrastrong, and Highly Conductive Graphene Films with Arbitrary Sizes. Adv. Mater. 2014, 26, 7588–7592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, Y.; Tang, S.; Feng, W. Preparation of a graphene oxide–phthalocyanine hybrid through strong π–π interactions. Carbon 2010, 48, 211–216. [Google Scholar] [CrossRef]
- Cheng, Q.; Jiang, L.; Tang, Z. Bioinspired Layered Materials with Superior Mechanical Performance. Acc. Chem. Res. 2014, 47, 1256–1266. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Z.; Zhang, J.; Shi, S.Q.; Gong, S.; Li, J. An ultrastrong bioinspired soy protein isolate-based nanocomposite with graphene oxide intercalation. Compos. Part B Eng. 2022, 236, 109805. [Google Scholar] [CrossRef]
- An, Z.; Compton, O.C.; Putz, K.W.; Brinson, L.C.; Nguyen, S.T. Bio-Inspired Borate Cross-Linking in Ultra-Stiff Graphene Oxide Thin Films. Adv. Mater. 2011, 23, 3842–3846. [Google Scholar] [CrossRef]
- Hao, W.; Zhang, L.; Wang, X.; Wang, J.; Hu, Z.; Yang, W. Tough and strong nacre-like composites from hyperbranched poly(amido amine) and clay nanosheets cross-linked by genipin. RSC Adv. 2016, 6, 1415–1421. [Google Scholar] [CrossRef]
- Carosio, F.; Cuttica, F.; Medina, L.; Berglund, L.A. Clay nanopaper as multifunctional brick and mortar fire protection coating—Wood case study. Mater. Des. 2016, 93, 357–363. [Google Scholar] [CrossRef]
- Sun, X.; Ye, Q.; Shi, S.Q.; Gong, S.; Gao, Q.; Li, J.; Fang, Z. A nacre-inspired strong and flame retardant laminated veneer lumber bonded with magnesium oxychloride cement. Wood Mater. Sci. Eng. 2023, 18, 254–261. [Google Scholar] [CrossRef]
- Carosio, F.; Alongi, J. Flame Retardant Multilayered Coatings on Acrylic Fabrics Prepared by One-Step Deposition of Chitosan/Montmorillonite Complexes. Fibers 2018, 6, 36. [Google Scholar] [CrossRef]
- Zhong, F.; Thomann, R.; Thomann, Y.; Burk, L.; Muelhaupt, R. Melt-Processable Nacre-Mimetic Hydrocarbon Composites via Polymer 1D Nanostructure Formation. Macromolecules 2019, 52, 9272–9279. [Google Scholar] [CrossRef]
- Ming, P.; Song, Z.; Gong, S.; Zhang, Y.; Duan, J.; Zhang, Q.; Jiang, L.; Cheng, Q. Nacre-inspired integrated nanocomposites with fire retardant properties by graphene oxide and montmorillonite. J. Mater. Chem. A 2015, 3, 21194–21200. [Google Scholar] [CrossRef]
- Ma, T.; Li, L.; Pan, M.; Guo, C.; Mei, C. In-situ synthesis of phosphorus-doped graphene paper with adenosine triphosphate and its application for intelligent fire warning. Compos. Part A Appl. Sci. Manuf. 2022, 162, 107142. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, Y.; Chen, G.; Yang, F.; Zhang, H.; Cao, C.; Zuo, B. Nacre-like graphene oxide paper bonded with boric acid for fire early-warning sensor. J. Hazard. Mater. 2021, 403, 123645. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ding, R.; Hong, S.Y.; Lee, J.; Seo, Y.-K.; Nam, J.-D.; Suhr, J. MXene-xanthan nanocomposite films with layered microstructure for electromagnetic interference shielding and Joule heating. Chem. Eng. J. 2021, 410, 128348. [Google Scholar] [CrossRef]
- Wang, F.; Mao, J. Nacre-like graphene oxide/waterborne styrene butadiene rubber composite and its reusable anti-corrosion behavior on Al-2024. Prog. Org. Coat. 2019, 132, 191–200. [Google Scholar] [CrossRef]
- Zhu, W.; Li, J.; Lei, J.; Li, Y.; Chen, T.; Duan, T.; Yao, W.; Zhou, J.; Yu, Y.; Liu, Y. Silver nanoparticles incorporated konjac glucomannan-montmorillonite nacre-like composite films for antibacterial applications. Carbohydr. Polym. 2018, 197, 253–259. [Google Scholar] [CrossRef]
- Liang, B.; Shu, Y.; Wan, P.; Zhao, H.; Dong, S.; Hao, W.; Yin, P. Genipin-enhanced nacre-inspired montmorillonite-chitosan film with superior mechanical and UV-blocking properties. Compos. Sci. Technol. 2019, 182, 107747. [Google Scholar] [CrossRef]
- Dai, J.; Wang, L.; Wang, Y.; Tian, S.; Tian, X.; Xie, A.; Zhang, R.; Yan, Y.; Pan, J. Robust Nacrelike Graphene Oxide–Calcium Carbonate Hybrid Mesh with Underwater Superoleophobic Property for Highly Efficient Oil/Water Separation. ACS Appl. Mater. Interfaces 2020, 12, 4482–4493. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, P.; Yu, S.; Zang, R.; Xu, L.; Wang, S.; Wang, B.; Meng, J. Nacre-inspired underwater superoleophobic films with high transparency and mechanical robustness. Nat. Protoc. 2022, 17, 2647–2667. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Mao, A.; Yu, J.; Hou, J.; Zhao, N.; Han, J.; Zhao, Q.; Gao, W.; Xie, T.; Bai, H. Nacre-mimetic composite with intrinsic self-healing and shape-programming capability. Nat. Commun. 2019, 10, 800. [Google Scholar] [CrossRef] [PubMed]
Function | Raw Material | Reference | |
---|---|---|---|
Inorganic raw material | Brick | Montmorillonite | [35,36,37] |
Graphene oxide | [38,39,40] | ||
MXene | [41,42,43] | ||
Organic raw material | Mortar | Polyvinyl alcohol | [44,45] |
Cellulose and its derivatives | [46,47,48] |
Strategies | Advantage | Disadvantage | Reference | |
---|---|---|---|---|
Layer-by-layer assembly | High-precision, regular nanocomposites | Time consuming and labor intensive | [57] | |
Vacuum filtration | Energy efficient | Low density and high porosity | [59] | |
Freeze casting | Fine control at large size | Imprecise control in small size | [31,61,62,63,64] | |
Others | Co-extrusion | Large-scale processing | Imprecise control | [65,66,67] |
3D printing | Generate 3D complex structures | Small-scale production | [68,69] |
Properties | Application | References |
---|---|---|
Light weight and high strength material | Structural material of construction, aviation, and biomedical | [81] |
Flame-retardant materials | Fireproof materials of construction, electronics | [47,82,83,84,85,86] |
Responsive materials | Inductor of smart fields | [87,88] |
Electromagnetic shielding materials | Isolation layer electronic components | [89] |
Anti-corrosion materials | Protective film of objects that come into contact with corrosive liquids | [90] |
Other applications | Oil/water separation net/membrane | [91,92,93,94,95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Yang, H.; Feng, X. Research Progress in Preparation, Properties and Applications of Biomimetic Organic-Inorganic Composites with “Brick-and-Mortar” Structure. Materials 2023, 16, 4094. https://doi.org/10.3390/ma16114094
Liu F, Yang H, Feng X. Research Progress in Preparation, Properties and Applications of Biomimetic Organic-Inorganic Composites with “Brick-and-Mortar” Structure. Materials. 2023; 16(11):4094. https://doi.org/10.3390/ma16114094
Chicago/Turabian StyleLiu, Feng, Hongyu Yang, and Xiaming Feng. 2023. "Research Progress in Preparation, Properties and Applications of Biomimetic Organic-Inorganic Composites with “Brick-and-Mortar” Structure" Materials 16, no. 11: 4094. https://doi.org/10.3390/ma16114094
APA StyleLiu, F., Yang, H., & Feng, X. (2023). Research Progress in Preparation, Properties and Applications of Biomimetic Organic-Inorganic Composites with “Brick-and-Mortar” Structure. Materials, 16(11), 4094. https://doi.org/10.3390/ma16114094