Computational Materials Design for Ceramic Nuclear Waste Forms Using Machine Learning, First-Principles Calculations, and Kinetics Rate Theory
Abstract
:1. Introduction
2. Incorporation of Waste Elements in Crystalline Ceramic Phases
3. Machine Learning for Ceramic Waste Form Design
3.1. Artificial Neural Network Simulation
3.2. Artificial Neural Network Simulation for Ceramic Waste Forms: Cases for Apatite-Structured and Hollandite-Structured Materials
4. First-Principles Thermodynamics and Electronic Structure Calculations for Ceramic Waste form Development
4.1. First-Principles Thermodynamics of Ceramic Waste Forms and the Case for Apatite-Structured Materials
4.2. Electronic Structure Calculations of Ceramic Waste Forms and Cases for β-Decay-Induced Instability (Radioparagenesis) in Apatite-Structured Materials
5. Modeling of the Dissolution Kinetics of Crystalline Ceramics in Aqueous Solution
5.1. Kinetic Rate Theory for Dissolution of Minerals and Crystalline Ceramics
5.2. Application of Kinetics Rate Theory—A Case Study of Iodoapatite Waste Form
6. Computational Materials Design and Performance Prediction of Ceramic Nuclear Waste Forms
7. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Ebert, W.L.; Yao, T.; Lian, J.; Valsaraj, K.T.; Wang, J. Chemical Durability and Dissolution Kinetics of Iodoapatite in Aqueous Solutions. ACS Earth Space Chem. 2019, 3, 452–462. [Google Scholar] [CrossRef]
- Appel, C.; Ma, L.Q.; Dean Rhue, R.; Kennelley, E. Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma 2003, 113, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Beall, G.W.; Allard, B. Chemical Aspects Governing the Choice of Backfill Materials for Nuclear Waste Repositories. Nucl. Technol. 1982, 59, 405–408. [Google Scholar] [CrossRef]
- Adair, J.H.; Suvacı, E.; Sindel, J. Surface and Colloid Chemistry. Chem. Rev. 1974, 74, 385–400. [Google Scholar]
- Alvarez-Silva, M.; Uribe-Salas, A.; Mirnezami, M.; Finch, J.A. The point of zero charge of phyllosilicate minerals using the Mular–Roberts titration technique. Miner. Eng. 2010, 23, 383–389. [Google Scholar] [CrossRef]
- Ringwood, A.E.; Kesson, S.E.; Ware, N.G.; Hibberson, W.; Major, A. Immobilization of high-level nuclear-reactor wastes in synroc. Nature 1979, 278, 219–223. [Google Scholar] [CrossRef]
- Donald, I.W.; Metcalfe, B.L.; Taylor, R.N.J. The immobilization of high level radioactive wastes using ceramics and glasses. J. Mater. Sci. 1997, 32, 5851–5887. [Google Scholar] [CrossRef]
- Weber, W.J.; Ewing, R.C.; Catlow, C.R.A.; de la Rubia, T.D.; Hobbs, L.W.; Kinoshita, C.; Matzke, H.; Motta, A.T.; Nastasi, M.; Salje, E.K.H.; et al. Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 1998, 13, 1434–1484. [Google Scholar] [CrossRef] [Green Version]
- Ewing, R.C. Nuclear waste forms for actinides. Proc. Natl. Acad. Sci. USA 1999, 96, 3432–3439. [Google Scholar] [CrossRef]
- Ewing, R.C. The design and evaluation of nuclear-waste forms: Clues from mineralogy. Can. Mineral. 2001, 39, 697–715. [Google Scholar] [CrossRef] [Green Version]
- Lumpkin, G.R. Ceramic Waste Forms for Actinides. Elements 2006, 2, 365–372. [Google Scholar] [CrossRef]
- Gregg, D.J.; Farzana, R.; Dayal, P.; Holmes, R.; Triani, G. Synroc technology: Perspectives and current status. J. Am. Ceram. Soc. 2020, 103, 5424–5441. [Google Scholar] [CrossRef]
- Singh, B.K.; Hafeez, M.A.; Kim, H.; Hong, S.; Kang, J.; Um, W. Inorganic Waste Forms for Efficient Immobilization of Radionuclides. ACS EST Eng. 2021, 1, 1149–1170. [Google Scholar] [CrossRef]
- Baran, E.J.; Schriewer-Pöttgen, M.S.; Jeitschko, W. Vibrational Spectra of Orthorhombic Strontium Halogen Apatites of the Type Sr5(ReO5)3X. J. Raman Spectrosc. 1996, 27, 391–394. [Google Scholar] [CrossRef]
- Kesson, S. Immobilization of cesium in SYNROC hollandite. Radioact. Waste Manag. Nucl. Fuel Cycle 1983, 4, 53–72. [Google Scholar]
- Audubert, F.; Carpena, J.; Lacout, J.L.; Tetard, F. Elaboration of an iodine-bearing apatite Iodine diffusion into a Pb3(VO4)2 matrix. Solid State Ion. 1997, 95, 113–119. [Google Scholar] [CrossRef]
- Le Gallet, S.; Campayo, L.; Courtois, E.; Hoffmann, S.; Grin, Y.; Bernard, F.; Bart, F. Spark plasma sintering of iodine-bearing apatite. J. Nucl. Mater. 2010, 400, 251–256. [Google Scholar] [CrossRef]
- Campayo, L.; Grandjean, A.; Coulon, A.; Delorme, R.; Vantelon, D.; Laurencin, D. Incorporation of iodates into hydroxyapatites: A new approach for the confinement of radioactive iodine. J. Mater. Chem. 2011, 21, 17609–17611. [Google Scholar] [CrossRef]
- Redfern, S.; Smith, S.; Maddrell, E. High-temperature breakdown of the synthetic iodine analogue of vanadinite, Pb5(VO4)3I: An apatite-related compound for iodine radioisotope immobilization? Mineral. Mag. 2012, 76, 997–1003. [Google Scholar] [CrossRef]
- Yao, T.; Scott, S.; Xin, G.; Lu, F.; Lian, J. Dense Iodoapatite Ceramics Consolidated by Low-Temperature Spark Plasma Sintering. J. Am. Ceram. Soc. 2015, 98, 3733–3739. [Google Scholar] [CrossRef]
- Wang, J. Incorporation of iodine into apatite structure: A crystal chemistry approach using Artificial Neural Network. Front. Earth Sci. 2015, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Chong, S.; Thirion, L.; Mauro, J.C.; McCloy, J.S.; Goel, A. Wet chemical synthesis of apatite-based waste forms—A novel room temperature method for the immobilization of radioactive iodine. J. Mater. Chem. A 2017, 5, 14331–14342. [Google Scholar] [CrossRef]
- Sheppard, G.P.; Hriljac, J.A.; Maddrell, E.R.; Hyatt, N.C. Silver Zeolites: Iodide Occlusion and conversion to Sodalite—A potential 129I waste form? MRS Proc. 2006, 932, 36.31. [Google Scholar] [CrossRef]
- Maddrell, E.; Gandy, A.; Stennett, M. The durability of iodide sodalite. J. Nucl. Mater. 2014, 449, 168–172. [Google Scholar] [CrossRef] [Green Version]
- Strachan, D.M.; Schulz, W.W. Characterization of pollucite as a material for long-term storage of cesium-137. J. Am. Ceram. Soc. Bull. 1979, 58, 865–868. [Google Scholar]
- Yanagisawa, K.; Nishioka, M.; Yamasaki, N. Immobilization of cesium into pollucite structure by hydrothermal hot-pressing. J. Nucl. Sci. Technol. 1987, 24, 51–60. [Google Scholar] [CrossRef]
- Aubin, V.; Caurant, D.; Gourier, D.; Baffier, N.; Advocat, F.; Bart, F.; Leturcq, G.; Costantini, J.M. Synthesis, Characterization and Study of the Radiation Effects on Hollandite Ceramics Developed for Cesium Immobilization. Mat. Res. Soc. Symp. Proc. 2004, 807, 315–320. [Google Scholar] [CrossRef]
- Luca, V.; Cassidy, D.; Drabarek, E.; Murray, K.; Moubaraki, B. Cesium Extraction from Cs0.8Ba0.4Ti8O16 Hollandite Nuclear Waste Form Ceramics in Nitric Acid Solutions. J. Mater. Res. 2005, 20, 1436–1446. [Google Scholar] [CrossRef]
- Angeli, F.; McGlinn, P.; Frugier, P. Chemical durability of hollandite ceramic for conditioning cesium. J. Nucl. Mater. 2008, 380, 59–69. [Google Scholar] [CrossRef]
- Yokomori, Y.; Asazuki, K.; Kamiya, N.; Yano, Y.; Akamatsu, K.; Toda, T.; Aruga, A.; Kaneo, Y.; Matsuoka, S.; Nishi, K.; et al. Final storage of radioactive cesium by pollucite hydrothermal synthesis. Sci. Rep. 2014, 4, 4195. [Google Scholar] [CrossRef] [Green Version]
- Jing, Z.; Hao, W.; He, X.; Fan, J.; Zhang, Y.; Miao, J.; Jin, F. A novel hydrothermal method to convert incineration ash into pollucite for the immobilization of a simulant radioactive cesium. J. Am. Ceram. Soc. Bull. 2016, 306, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Tumurugoti, P.; Clark, B.; Edwards, D.; Amoroso, J.; Sundaram, S. Cesium incorporation in hollandite-rich multiphasic ceramic waste forms. J. Solid State Chem. 2017, 246, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Grote, R.; Hong, T.; Shuller-Nickles, L.; Amoroso, J.; Tang, M.; Brinkman, K. Radiation tolerant ceramics for nuclear waste immobilization: Structure and stability of cesium containing hollandite of the form (Ba, Cs)1.33(Zn, Ti)8O16 and (Ba, Cs)1.33(Ga, Ti)8O16. J. Nucl. Mater. 2019, 518, 166–176. [Google Scholar] [CrossRef]
- Omerašević, M.; Lukić, M.; Savić-Biserčić, M.; Savić, A.; Matović, L.; Baščarević, Z.; Bučevac, D. Permanent disposal of Cs ions in the form of dense pollucite ceramics having low thermal expansion coefficient. Nucl. Eng. Technol. 2020, 52, 115. [Google Scholar] [CrossRef]
- Orlova, A.I.; Ojovan, M.I. Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization. Materials 2019, 12, 2638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankel, G.S.; Vienna, J.D.; Lian, J.; Scully, J.R.; Gin, S.; Ryan, J.V.; Wang, J.; Kim, S.H.; Windl, W.; Du, J. A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. Npj Mater. Degrad. 2018, 2, 15. [Google Scholar] [CrossRef]
- Frankel, G.S.; Vienna, J.D.; Lian, J.; Guo, X.; Gin, S.; Kim, S.H.; Du, J.; Ryan, J.V.; Wang, J.; Windl, W.; et al. Recent Advances in Corrosion Science Applicable to Disposal of High-Level Nuclear Waste. Chem. Rev. 2021, 121, 12327–12383. [Google Scholar] [CrossRef]
- Jantzen, C.M.; Bibler, N.E. The Product Consistency Test (ASTM C1285) for Waste Form Durability Testing. In Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries XI; Herman, C.C., Marra, S., Spearing, D., Vance, L., Vienna, J., Eds.; Wiley: Hoboken, NJ, USA, 2006; pp. 139–151. [Google Scholar] [CrossRef]
- Wang, J. Thermodynamic equilibrium and kinetic fundamentals of oxide dissolution in aqueous solution. J. Mater. Res. 2020, 35, 898–921. [Google Scholar] [CrossRef]
- Ewing, R.C.; Weber, W.J.; Lian, J. Nuclear waste disposal—Pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides. J. Appl. Phys. 2004, 95, 5949–5971. [Google Scholar] [CrossRef] [Green Version]
- Weber, W.J.; Navrotsky, A.; Stefanovsky, S.; Vance, E.R.; Vernaz, E. Materials Science of High-Level Nuclear Waste Immobilization. MRS Bull. 2009, 34, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Pilania, G.; Goldsmith, B.R.; Yoon, M.; Dongare, A.M. Recent advances in computational materials design: Methods, applications, algorithms, and informatics. J. Mater. Sci. 2022, 57, 10471–10474. [Google Scholar] [CrossRef] [PubMed]
- Shevlin, S.; Castro, B.; Li, X. Computational materials design. Nat. Mater. 2021, 20, 727. [Google Scholar] [CrossRef]
- Peterson, G.G.C.; Brgoch, J. Materials discovery through machine learning formation energy. J. Phys. Energy 2021, 3, 022002. [Google Scholar] [CrossRef]
- Juan, Y.; Dai, Y.; Yang, Y.; Zhang, J. Accelerating materials discovery using machine learning. J. Mater. Sci. Technol. 2021, 79, 178–190. [Google Scholar] [CrossRef]
- Wang, W.Y.; Li, J.; Liu, W.; Liu, Z.-K. Integrated computational materials engineering for advanced materials: A brief review. Comput. Mater. Sci. 2019, 158, 42–48. [Google Scholar] [CrossRef]
- Schmidt, J.; Marques, M.R.G.; Botti, S.; Marques, M.A.L. Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 2019, 5, 83. [Google Scholar] [CrossRef] [Green Version]
- Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Machine learning in materials informatics: Recent applications and prospects. Npj Comput. Mater. 2017, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Saal, J.E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD). J. Miner. Met. Mater. Soc. 2013, 65, 1501–1509. [Google Scholar] [CrossRef]
- Curtarolo, S.; Hart, G.L.; Nardelli, M.B.; Mingo, N.; Sanvito, S.; Levy, O. The high-throughput highway to computational materials design. Nat. Mater. 2013, 12, 191–201. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Bligaard, T.; Rossmeisl, J.; Christensen, C.H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46. [Google Scholar] [CrossRef]
- White, T.J.; ZhiLi, D. Structural derivation and crystal chemistry of apatites. Acta Crystallogr. Sect. B 2003, 59, 1–16. [Google Scholar] [CrossRef] [PubMed]
- White, T.; Ferraris, C.; Kim, J.; Madhavi, S. Apatite—An adaptive framework structure. In Micro- and Mesoporous Mineral Phases; Ferraris, G., Merlino, S., Eds.; Reviews in Mineralogy & Geochemistry; 2005; Volume 57, pp. 307–401. [Google Scholar] [CrossRef]
- Baud, G.; Besse, J.P.; Sueur, G.; Chevalier, R. Structure de nouvelles apatites au rhenium contenant des anions volumineux: Ba10(ReO5)6X2 (X = Br, I). Mater. Res. Bull. 1979, 14, 675–682. [Google Scholar] [CrossRef]
- Yao, G.; Zhang, Z.; Wang, J. Beta transmutations in apatites with ferric iron as an electron acceptor—implication for nuclear waste form development. Phys. Chem. Chem. Phys. 2017, 19, 25487–25497. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wu, L.; Zhu, J.; Navrotsky, A. Synthesis, characterization and thermochemistry of Cs-, Rb-and Sr-substituted barium aluminium titanate hollandites. J. Nucl. Mater. 2015, 459, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Feygenson, M.; Page, K.; Nickles, L.S.; Brinkman, K.S. Structural evolution in hollandite solid solutions across the A-site compositional range from Ba1.33Ga2.66Ti5.34O16 to Cs1.33Ga1.33Ti6.67O16. J. Am. Ceram. Soc. 2016, 99, 4100–4106. [Google Scholar] [CrossRef]
- Ma, J.; Fang, Z.; Yang, X.; Wang, B.; Luo, F.; Zhao, X.; Yang, Y. Investigating hollandite–perovskite composite ceramics as a potential waste form for immobilization of radioactive cesium and strontium. J. Mater. Sci. 2021, 56, 9644–9654. [Google Scholar] [CrossRef]
- Utlak, S.A.; Besmann, T.M.; Brinkman, K.S.; Amoroso, J.W. Thermodynamic assessment of the hollandite high-level radioactive waste form. J. Am. Ceram. Soc. 2019, 102, 6284–6297. [Google Scholar] [CrossRef]
- Grote, R.; Zhao, M.; Shuller-Nickles, L.; Amoroso, J.; Gong, W.; Lilova, K.; Navrotsky, A.; Tang, M.; Brinkman, K. Compositional control of tunnel features in hollandite-based ceramics: Structure and stability of (Ba, Cs)1.33 (Zn, Ti)8O16. J. Mater. Sci. 2019, 54, 1112–1125. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Luo, S.; Yang, X.; Ma, J. Stability studies of [CsxBay][(Al3+,Ti3+)2y+xTi4+8-2y-x]O16 ceramics for radioactive caesium immobilization. Ceram. Int. 2019, 45, 7865–7870. [Google Scholar] [CrossRef]
- Yang, K.; Lei, P.; Yao, T.; Gong, B.; Wang, Y.; Li, M.; Wang, J.; Lian, J. A systematic study of lanthanide titanates (A2Ti2O7) chemical durability: Corrosion mechanisms and control parameters. Corros. Sci. 2021, 185, 109394. [Google Scholar] [CrossRef]
- Marks, N.A.; D J Carter1, M.S.; Rohl, A.L.; Sickafus, K.E.; Uberuaga, B.P.; Stanek, C.R. Chemical evolution via beta decay: A case study in strontium-90. J. Phys. Condens. Matter 2013, 25, 065504. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Lu, F.; Sun, H.; Wang, J.; Ewing, R.C.; Lian, J. Bulk iodoapatite ceramic densified by spark plasma sintering with exceptional thermal stability. J. Am. Ceram. Soc. 2014, 97, 2409–2412. [Google Scholar] [CrossRef]
- Wen, Y.; Xu, Y.; Brinkman, K.S.; Shuller-Nickles, L. Atomistic scale investigation of cation ordering and phase stability in Cs-substituted Ba1.33Zn1.33Ti6.67O16, Ba1.33Ga2.66Ti5.67O16 and Ba1.33Al2.66Ti5.33O16 hollandite. Sci. Rep. 2018, 8, 5003. [Google Scholar] [CrossRef] [PubMed]
- Hartnett, T.Q.; Ayyasamy, M.V.; Balachandran, P.V. Prediction of new iodine-containing apatites using machine learning and density functional theory. MRS Commun. 2019, 9, 882–890. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, D.B.; Karki, B.B.; Wang, J. Utilization of Artificial Neural Network to explore the compositional space of hollandite-structured materials for radionuclide Cs incorporation. J. Nucl. Mater. 2020, 530, 151957. [Google Scholar] [CrossRef]
- Schleder, G.R.; Padilha, A.C.; Acosta, C.M.; Costa, M.; Fazzio, A. From DFT to machine learning: Recent approaches to materials science—A review. J. Phys. Mater. 2019, 2, 032001. [Google Scholar] [CrossRef]
- Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, T.; Ju, W.; Shi, S. Materials discovery and design using machine learning. J. Mater. 2017, 3, 159–177. [Google Scholar] [CrossRef]
- Mueller, T.; Kusne, A.G.; Ramprasad, R. Machine learning in materials science: Recent progress and emerging applications. Rev. Comput. Chem. 2016, 29, 186–273. [Google Scholar]
- Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. Npj Comput. Mater. 2016, 2, 16028. [Google Scholar] [CrossRef] [Green Version]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werbos, P.J. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550–1560. [Google Scholar] [CrossRef]
- Zhang, Z.; Friedrich, K. Artificial neural networks applied to polymer composites: A review. Compos. Sci. Technol. 2003, 63, 2029–2044. [Google Scholar] [CrossRef]
- Samarasinghe, S. From Data to Models: Complexity and Challenges in Understanding Biological, Ecological, and Natural Systems. In Neural Networks for Applied Sciences and Engineering; Chapter 1; Auerbach Publications: New York, USA, 2006; p. 570. [Google Scholar] [CrossRef]
- Lucon, P.A.; Donovan, R.P. An artificial neural network approach to multiphase continua constitutive modeling. Compos. Part B-Eng. 2007, 38, 817–823. [Google Scholar] [CrossRef]
- Gong, B.; Yang, K.; Lian, J.A.; Wang, J. Machine learning-enabled prediction of chemical durability of A2B2O7 pyrochlore and fluorite. Comput. Mater. Sci. 2021, 200, 110820. [Google Scholar] [CrossRef]
- Wu, P.; Zeng, Y.Z.; Wang, C.M. Prediction of apatite lattice constants from their constituent elemental radii and artificial intelligence methods. Biomaterials 2004, 25, 1123–1130. [Google Scholar] [CrossRef]
- Puzio, B.; Zhang, L.; Szymanowski, J.E.S.; Burns, P.C.; Manecki, M. Thermodynamic characterization of synthetic lead-arsenate apatites with different halogen substitutions. Am. Mineral. 2023, 108, 675–685. [Google Scholar] [CrossRef]
- Islam, M.I. Solid State Synthesis and Characterization of Apatite Based Ceramic Waste Form for the Immobilization of Radioactive Iodine. Ph.D. Dissertation, Louisiana State University, Baton Rouge, LA, USA, 2021. [Google Scholar]
- Kesson, S.E.; White, T.J. Radius ratio tolerance factors and the stability of hollandites. J. Solid State Chem. 1986, 63, 122–125. [Google Scholar] [CrossRef]
- Jiang, C.; Uberuaga, B.P.; Sickafus, K.E.; Nortier, F.M.; Kitten, J.J.; Marks, N.A.; Stanek, C.R. Using “radioparagenesis” to design robust nuclear waste forms. Energy Environ. Sci. 2010, 3, 130–135. [Google Scholar] [CrossRef]
- Cheary, R.W. An analysis of the structural characteristics of hollandite compounds. Acta Crystallogr. Sect. B Struct. Sci. 1986, 42, 229–236. [Google Scholar] [CrossRef]
- Dezerald, L.; Kohanoff, J.J.; Correa, A.A.; Caro, A.; Pellenq, R.J.M.; Ulm, F.J.; Saúl, A. Cement As a Waste Form for Nuclear Fission Products: The Case of 90Sr and Its Daughters. Environ. Sci. Technol. 2015, 49, 13676–13683. [Google Scholar] [CrossRef] [Green Version]
- Dove, M.T. Introduction to Lattice Dynamics; Cambridge University Press: Cambridge, UK, 1993; Volume 4. [Google Scholar] [CrossRef]
- Ramírez, R.; Neuerburg, N.; Fernández-Serra, M.-V.; Herrero, C.P. Quasi-harmonic approximation of thermodynamic properties of ice Ih, II, and III. J. Chem. Phys. 2012, 137, 044502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalski, P.M.; Ji, Y.; Li, Y.; Arinicheva, Y.; Beridze, G.; Neumeier, S.; Bukaemskiy, A.; Bosbach, D. Simulation of ceramic materials relevant for nuclear waste management: Case of La1−xEuxPO4 solid solution. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2017, 393, 68–72. [Google Scholar] [CrossRef]
- Vance, E.R.; Roy, R.; Pepin, J.; Agrawal, D.K. Chemical mitigation of the transmutation problem in crystalline nuclear waste radiophases. J. Mater. Sci. 1982, 17, 947–952. [Google Scholar] [CrossRef]
- Gray, W.J. Fission product transmutation effects on high-level radioactive waste forms. Nature 1982, 296, 547–549. [Google Scholar] [CrossRef]
- Hench, L.L.; Clark, D.E.; Harker, A.B. Nuclear waste solids. J. Mater. Sci. 1986, 21, 1457–1478. [Google Scholar] [CrossRef]
- Jantzen, C.M.; Williams, M.R. Fluidized Bed Steam Reforming (FBSR) Mineralization for High Organic and Nitrate Waste Streams for the Global Nuclear Energy Partnership (GNEP). In Proceedings of the WM2008 Conference, Phoenix, AZ, USA, 24–28 February 2008. [Google Scholar]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef] [Green Version]
- Aagaard, P.; Helgeson, H.C. Thermodynamic and Kinetic Constraints on Reaction-Rates among Minerals and Aqueous-Solutions (I) Theoretical Considerations. Am. J. Sci. 1982, 282, 237–285. [Google Scholar] [CrossRef]
- Lasaga, A.C. Chemical kinetics of water-rock interactions. J. Geophys. Res. Solid Earth 1984, 89, 4009–4025. [Google Scholar] [CrossRef]
- Brantley, S.L. Kinetics of mineral dissolution. In Kinetics of Water-Rock Interaction; Springer: New York, NY, USA, 2008; pp. 151–210. [Google Scholar]
- Schott, J.; Pokrovsky, O.S.; Oelkers, E.H. The link between mineral dissolution/precipitation kinetics and solution chemistry. Rev. Mineral. Geochem. 2009, 70, 207–258. [Google Scholar] [CrossRef]
- ASTM C1285-21; Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT). ASTM: West Conshohocken, PA, USA, 2014; p. 27.
- Ravikumar, R.; Gopal, B. Structural integrity of Cs and Sr immobilized lacunar apatite phosphate simulated ceramic wasteform Na0.9Cs0.1Pb3Sr (PO4)3 under heat and aqueous flow. J. Nucl. Mater. 2022, 558, 153388. [Google Scholar] [CrossRef]
- Topolska, J.; Puzio, B.; Borkiewicz, O.; Sordyl, J.; Manecki, M. Solubility product of vanadinite Pb5(VO4)3Cl at 25 °C—A comprehensive approach to incongruent dissolution modeling. Minerals 2021, 11, 135. [Google Scholar] [CrossRef]
- Reiser, J.T.; Lawter, A.R.; Avalos, N.A.; Bonnett, J.; Riley, B.J.; Chong, S.; Canfield, N.; Saslow, S.A.; Bourchy, A.; Asmussen, R.M. Review and experimental comparison of the durability of iodine waste forms in semi-dynamic leach testing. Chem. Eng. J. Adv. 2022, 11, 100300. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, T.; Xi, F.; Lei, P.; Guo, X.; He, L.; Frankel, G.S.; Lian, J. Degradation mechanism of lead-vanado-iodoapatite in NaCl solution. Corros. Sci. 2020, 172, 108720. [Google Scholar] [CrossRef]
- Zhang, Z.; Gustin, L.; Xie, W.; Lian, J.; Valsaraj, K.T.; Wang, J. Effect of solution chemistry on the iodine release from iodoapatite in aqueous environments. J. Nucl. Mater. 2019, 525, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Guo, X.; Lei, P.; Wang, Y.; Frankel, G.S.; Lian, J. Corrosion interactions between stainless steel and lead vanado-iodoapatite nuclear waste form part II. Npj Mater. Degrad. 2020, 4, 15. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Y.; Yao, T.; Mohanty, C.; Lian, J.; Frankel, G.S. Corrosion interactions between stainless steel and lead vanado-iodoapatite nuclear waste form part I. Npj Mater. Degrad. 2020, 4, 13. [Google Scholar] [CrossRef]
- Zhang, Z.; Heath, A.; Valsaraj, K.T.; Ebert, W.L.; Yao, T.; Lian, J.; Wang, J. Mechanism of iodine release from iodoapatite in aqueous solution. RSC Adv. 2018, 8, 3951–3957. [Google Scholar] [CrossRef] [Green Version]
- Côtê, P.L.; Constable, T.W.; Moreira, A. An evaluation of cement-based waste forms using the results of approximately two years of dynamic leaching. Nucl. Chem. Waste Manag. 1987, 7, 129–139. [Google Scholar] [CrossRef]
- Côté, P. Contaminant leaching from cement-based waste forms under acidic conditions. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 1986. [Google Scholar]
- Sverjensky, D.A. Linear free energy relations for predicting dissolution rates of solids. Nature 1992, 358, 310–313. [Google Scholar] [CrossRef]
- Crundwell, F.K. The mechanism of dissolution of minerals in acidic and alkaline solutions: Part II Application of a new theory to silicates, aluminosilicates and quartz. Hydrometallurgy 2014, 149, 265–275. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Ghosh, D.B.; Zhang, Z. Computational Materials Design for Ceramic Nuclear Waste Forms Using Machine Learning, First-Principles Calculations, and Kinetics Rate Theory. Materials 2023, 16, 4985. https://doi.org/10.3390/ma16144985
Wang J, Ghosh DB, Zhang Z. Computational Materials Design for Ceramic Nuclear Waste Forms Using Machine Learning, First-Principles Calculations, and Kinetics Rate Theory. Materials. 2023; 16(14):4985. https://doi.org/10.3390/ma16144985
Chicago/Turabian StyleWang, Jianwei, Dipta B. Ghosh, and Zelong Zhang. 2023. "Computational Materials Design for Ceramic Nuclear Waste Forms Using Machine Learning, First-Principles Calculations, and Kinetics Rate Theory" Materials 16, no. 14: 4985. https://doi.org/10.3390/ma16144985
APA StyleWang, J., Ghosh, D. B., & Zhang, Z. (2023). Computational Materials Design for Ceramic Nuclear Waste Forms Using Machine Learning, First-Principles Calculations, and Kinetics Rate Theory. Materials, 16(14), 4985. https://doi.org/10.3390/ma16144985