Cobalt Impregnation on Titania Photocatalysts Enhances Vis Phenol Photodegradation
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Catalyst Synthesis
2.3. Characterization
2.4. Photocatalytic Activity
3. Results and Discussion
3.1. Characterization of the Catalysts
3.1.1. X-ray Diffraction
3.1.2. Raman Spectroscopy
3.1.3. Scanning Electron Microscopy and Energy Dispersive Spectroscopy
3.1.4. XPS Analysis
3.1.5. Textural Properties
3.1.6. UV-Vis Diffuse Reflectance Spectroscopy
3.2. Kinetics of Phenol Photodegradation
3.3. Total Organic Carbon (TOC) Analysis
3.4. Photodegradation and Energetic Efficiency of the Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ñungo-Moreno, J.; Carriazo, S.D.; Moreno, S.; Molina, R.A. Degradación fotocatalítica de fenol empleando arcillas pilarizadas con Al-Fe y Al-Cu. Rev. Acad. Colomb. Cienc. Exact. Fis. Nat. 2011, 35, 295–302. [Google Scholar]
- Höfer, T. Tainting of seafood and marine pollution. Water Res. 1998, 32, 3505–3512. [Google Scholar] [CrossRef]
- Michałowicz, J.; Duda, W. Phenols—Sources and Toxicity. Pol. J. Environ. Stud. 2007, 16, 347–362. [Google Scholar]
- Ahmaruzzaman, M. Adsorption of Phenolic Compounds on Low-Cost Adsorbents: A Review. Adv. Colloid Interface Sci. 2008, 143, 48–67. [Google Scholar] [CrossRef]
- Zularisam, A.W.; Ismail, A.F.; Salim, R. Behaviours of Natural Organic Matter in Membrane Filtration for Surface Water Treatment—A Review. Desalination 2006, 194, 211–231. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, X.; Yang, H.; Chen, X.; Yang, Q.; Yu, L. Science of the Total Environment Aqueous Adsorption and Removal of Organic Contaminants by Carbon Nanotubes. Sci. Total Environ. 2014, 482–483, 241–251. [Google Scholar] [CrossRef]
- Barakat, M.A. New Trends in Removing Heavy Metals from Industrial Wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef]
- Canle, M.L.; Santaballa, J.A.; Vulliet, E. On the Mechanism of TiO2—Photocatalyzed Degradation of Aniline Derivatives. J. Photochem. Photobiol. A Chem. 2005, 175, 192–200. [Google Scholar] [CrossRef]
- Sakthivel, S.; Neppolian, B.; Shankar, M.V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Solar Photocatalytic Degradation of Azo Dye: Comparison of Photocatalytic Efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. Cells 2003, 77, 65–82. [Google Scholar] [CrossRef]
- Mishra, M.; Chun, D. Applied Catalysis A: General α-Fe2O3 as a Photocatalytic Material: A Review. Appl. Catal. A Gen. 2015, 498, 126–141. [Google Scholar] [CrossRef]
- Alshorifi, F.T.; Alswat, A.A.; Mannaa, M.A.; Alotaibi, M.T.; E-Bahy, S.M.; Salama, R.S. Facile and Green Synthesis of Silver Quantum Dots Immobilized onto a Polymeric CTS-PEO Blend for the Photocatalytic Degradation of p-Nitrophenol. ACS Omega 2021, 6, 30432–30441. [Google Scholar] [CrossRef]
- Alshorifi, F.T.; Alswat, A.A.; Salama, R.S. Gold-selenide Quantum Dots Supported onto Cesium Ferrite Nanocomposites for the Efficient Degradation of Rhodamine B. Heliyon 2022, 8, E09652. [Google Scholar] [CrossRef]
- Saleh, T.S.; Badawi, A.K.; Salama, R.S.; Mostafa, M.M.M. Design and Development of Novel Composites Containing Nickel Ferrites Supported on Activated Carbon Derived from Agricultural Wastes and Its Application in Water Remediation. Materials 2023, 16, 2170. [Google Scholar] [CrossRef]
- Miwa, T.; Kaneco, S.; Katsumata, H.; Suzuki, T. Photocatalytic Hydrogen Production from Aqueous Methanol Solution with CuO/Al2O3/TiO2 Nanocomposite. Int. J. Hydrog. Energy 2010, 35, 6554–6560. [Google Scholar] [CrossRef]
- Su, R.; Bechstein, R.; Sø, L.; Vang, R.T.; Sillassen, M.; Palmqvist, A.; Besenbacher, F. How the Anatase-to-Rutile Ratio Influences the Photoreactivity of TiO2. J. Phys. Chem. C 2011, 115, 24287–24292. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the Anatase to Rutile Phase Transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Morphology of a TiO2 photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. J. Catal. 2001, 203, 82–86. [Google Scholar] [CrossRef]
- Kouamé, N.A.; Alaoui, O.T.; Herissan, A.; Larios, E.; José-Yacaman, M.; Etcheberry, A.; Colbeau-Justin, C.; Remita, H. Visible Light-Induced Photocatalytic Activity of Modified Titanium(IV) Oxide with Zero-Valent Bismuth Clusters. New J. Chem. 2015, 39, 2316–2322. [Google Scholar] [CrossRef]
- Hai, Z.; El Kolli, N.; Uribe, D.B.; Beaunier, P.; José-Yacaman, M.; Vigneron, J.; Etcheberry, A.; Sorgues, S.; Colbeau-Justin, C.; Chen, J.; et al. Modification of TiO2 by Bimetallic Au–Cu Nanoparticles for Wastewater Treatment. J. Mater. Chem. A 2013, 1, 10829–10835. [Google Scholar] [CrossRef]
- Boukhatem, H.; Khalaf, H.; Djouadi, L.; Gonzalez, F.V.; Navarro, R.M.; Santaballa, J.A.; Canle, M. Photocatalytic Activity of Mont-La (6%)-Cu0.6Cd0.4S Catalyst for Phenol Degradation under near UV Visible Light Irradiation. Appl. Catal. B Environ. 2017, 211, 114–125. [Google Scholar] [CrossRef]
- Grabowska, E.; Reszczyńska, J.; Zaleska, A. Mechanism of Phenol Photodegradation in the Presence of Pure and Modified-TiO2: A Review. Water Res. 2012, 46, 5453–5471. [Google Scholar] [CrossRef] [PubMed]
- Fabiano, M.; Almeida, D.; Roberto, C.; Honor, A.; Olavo, S.; Lopes, J.; Divina, L.; Miranda, L. Applied Surface Science Enhanced Photocatalytic Activity of TiO2—Impregnated with MgZnAl Mixed Oxides Obtained from Layered Double Hydroxides for Phenol Degradation. Appl. Surf. Sci. 2015, 357, 1765–1775. [Google Scholar] [CrossRef]
- Dobrosz-Gómez, I.; Gómez-García, M.; López Zamora, S.M.; Gilpavas, E.; Bojarska, J.; Kozanecki, M.; Rynkowski, J.M. Transition Metal Loaded TiO2 for Phenol Photo-Degradation. Comptes Rendus Chim. 2015, 18, 1170–1182. [Google Scholar] [CrossRef]
- Iawasaki, T.; Hara, M.; Kawada, H.; Tada, H.; Ito, S. Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light. J. Colloid Interface Sci. 2000, 204, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Barakat, M.A.; Schaeffer, H.; Hayes, G.; Ismat-shah, S. Photocatalytic Degradation of 2-Chlorophenol by Co-Doped TiO2 Nanoparticles. Appl. Catal. B Environ. 2005, 57, 23–30. [Google Scholar] [CrossRef]
- El Mragui, A.; Zegaoui, O.; da Silva, J.C.G.E. Chemosphere Elucidation of the Photocatalytic Degradation Mechanism of an Azo Dye under Visible Light in the Presence of Cobalt Doped TiO2 Nanomaterials. Chemosphere 2020, 266, 128931. [Google Scholar] [CrossRef]
- El Shazly, A.N.; El Sayyad, G.S.; Hegazy, A.H.; Hamza, M.A.; Fathy, R.M.; El Shenawy, E.T.; Allam, N.K. Superior Visible Light Antimicrobial Performance of Facet Engineered Cobalt Doped—TiO2 Mesocrystals in Pathogenic Bacterium and Fungi. Sci. Rep. 2021, 11, 5609. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2—Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations: A Review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Romeiro, A.; Freitas, D.; Emília Azenha, M.; Canle, M.; Burrows, H.D. Effect of the Calcination Temperature on the Photocatalytic Efficiency of Acidic Sol-Gel Synthesized TiO2 nanoparticles in the Degradation of Alprazolam. Photochem. Photobiol. Sci. 2017, 16, 935–945. [Google Scholar] [CrossRef]
- Li, X.; Zou, X.; Qu, Z.; Zhao, Q.; Wang, L. Photocatalytic Degradation of Gaseous Toluene over Ag-Doping TiO2 Nanotube Powder Prepared by Anodization Coupled with Impregnation Method. Chemosphere 2011, 83, 674–679. [Google Scholar] [CrossRef]
- Kuhn, H.J.; Braslavsky, S.E.; Schmidt, R. Chemical Actinometry (IUPAC Technical Report). Pure Appl. Chem. 2004, 76, 2105–2146. [Google Scholar] [CrossRef]
- Belekbir, S.; El Azzouzi, M.; El Hamidi, A.; Rodr, L.; Santaballa, J.A. Improved Photocatalyzed Degradation of Phenol, as a Model Pollutant, over Metal-Impregnated Nanosized TiO2. Nanomaterials 2020, 10, 996. [Google Scholar] [CrossRef]
- Jiang, X.; Manawan, M.; Feng, T.; Qian, R.; Zhao, T.; Zhou, G.; Kong, F.; Wang, Q.; Dai, S.; Pan, J.H. Anatase and Rutile in Evonik Aeroxide P25: Heterojunctioned or Individual Nanoparticles? Catal. Today 2018, 300, 12–17. [Google Scholar] [CrossRef]
- Spurr, R.A.; Myers, H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Anal. Chem. 1957, 29, 760–762. [Google Scholar] [CrossRef]
- Behnajady, M.A.; Eskandarloo, H. Silver and Copper Co-Impregnated onto TiO2-P25 Nanoparticles and Its Photocatalytic Activity. Chem. Eng. J. 2013, 228, 1207–1213. [Google Scholar] [CrossRef]
- Khurana, C.; Bhupendra, O.P.P. Synthesis of Visible Light-Responsive Cobalt-Doped TiO2 Nanoparticles with Tunable Optical Band Gap. J. Sol-Gel Sci. Technol. 2015, 75, 424–435. [Google Scholar] [CrossRef]
- Choudhury, B.; Choudhury, A. Luminescence Characteristics of Cobalt Doped TiO2 Nanoparticles. J. Lumin. 2012, 132, 178–184. [Google Scholar] [CrossRef]
- Scherrer, V.P. Bestimmung Der Inneren Struktur Und Der Größe von Kolloidteilchen Mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. 1918, 1918, 98–100. [Google Scholar]
- Busca, G.; Ramis, G.; Piaggio, P. FT Raman and FTlR Studies of Titanias and Metatitanate Powders. J. Chem. Soc. Faraday Trans. 1994, 90, 3181–3190. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Hardcastle, F.D.; Ishihara, H.; Biris, A.S. Photoelectroactivity and Raman spectroscopy of anodized titania (TiO2) photoactive water-splitting catalysts as a function of oxygen-annealing temperature. J. Mater. Chem. 2011, 21, 6337–6345. [Google Scholar] [CrossRef]
- El-Shazly, A.N.; Hegazy, A.H.; El Shenawy, E.T.; Hamza, M.A.; Allam, K. Solar Energy Materials and Solar Cells Novel Facet-Engineered Multi-Doped TiO2 Mesocrystals with Unprecedented Visible Light Photocatalytic Hydrogen Production. Sol. Energy Mater. Sol. Cells 2021, 220, 110825. [Google Scholar] [CrossRef]
- Gaur, L.K.; Kumar, P.; Kushavah, D.; Khiangte, K.R.; Mathpal, M.C.; Agrahari, V.; Gairola, S.P.; Soler, M.A.G.; Swart, H.C.; Agarwal, A. Laser induced phase transformation influenced by Co doping in TiO2 nanoparticles. J. Alloy. Compd. 2019, 780, 25–34. [Google Scholar] [CrossRef]
- Yang, L.; Qin, X.; Gong, M.; Jiang, X.; Yang, M.; Li, X.; Li, G. Molecular and Biomolecular Spectroscopy Improving Surface-Enhanced Raman Scattering Properties of TiO2 Nanoparticles by Metal Co Doping. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 123, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Szadkowska-nicze, M.; Abramczyk, H. Raman Spectroscopy of Visible-Light Photocatalyst—Nitrogen-Doped Titanium Dioxide Generated by Irradiation with Electron Beam. Chem. Phys. Lett. 2013, 566, 54–59. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Das, K.; Sharma, S.N.; Kumarm, M.; De, S.K. Morphology Dependent Luminescence Properties of Co Doped TiO2 Nanostructures. J. Phys. Chem. C 2009, 113, 14783–14792. [Google Scholar] [CrossRef]
- Shao, G.-S.; Zhang, X.-J.; Yuan, Z.-Y. Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2-xNx. Appl. Catal. B Environ. 2008, 82, 208–218. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Gases in Multimolecular Layers. J. Am. Chem. Soc. 1936, 60, 309–318. [Google Scholar] [CrossRef]
- Tianping, L.V.; Zhao, J.; Chen, M.; Shen, K.; Zhang, D.; Zhang, J.; Zhang, G.; Liu, Q. Boosted Visible-Light Photodegradation of Methylene Blue by V and Co Co-Doped TiO2. Materials 2018, 11, 1946. [Google Scholar] [CrossRef]
- Romeiro, A.; Azenha, M.E.; Canle, M.; Rodrigues, V.H.N.; Silva, J.P.; Burrows, H.D. Titanium Dioxide Nanoparticle Photocatalysed Degradation of Ibuprofen and Naproxen in Water: Competing Hydroxyl Radical Attack and Oxidative Decarboxylation by Semiconductor Holes. ChemistrySelect 2018, 3, 10915–10924. [Google Scholar] [CrossRef]
- Sathish, M.; Viswanathan, B.; Viswanath, R.P.; Gopinath, C.S. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst. Chem. Mater. 2005, 17, 6349–6353. [Google Scholar] [CrossRef]
- Gao, L.; Li, Y.; Ren, J.; Wang, S.; Wang, R.; Fu, G.; Hu, Y. Passivation of Defect States in Anatase TiO2 Hollow Spheres with Mg Doping: Realizing Efficient Photocatalytic Overall Water Splitting. Appl. Catal. B Environ. 2017, 202, 127–133. [Google Scholar] [CrossRef]
- Colón, G.; Maicu, M.; Hidalgo, M.C.; Navío, J.A. Cu-Doped TiO2 systems with Improved Photocatalytic Activity. Appl. Catal. B Environ. 2006, 67, 41–51. [Google Scholar] [CrossRef]
- Gärtner, M.; Dremov, V.; Müller, P.; Kisch, H. Bandgap Widening of Titania through Semiconductor Support Interactions. ChemPhysChem 2005, 6, 714–718. [Google Scholar] [CrossRef]
- Canle, M.; Fernández, M.I.; Martínez, C.; Santaballa, J.A. Photochemistry for Pollution Abatement. Pure Appl. Chem. 2013, 85, 1437–1449. [Google Scholar] [CrossRef]
- Canle, M.; Fernández, M.I.; Martínez, C.; Santaballa, J.A. (Re)Greening Photochemistry: Using Light for Degrading Persistent Organic Pollutants. Rev. Environ. Sci. Biotechnol. 2012, 11, 213–221. [Google Scholar] [CrossRef]
- Jaimy, K.B.; Ghosh, S.; Sankar, S.; Warrier, K.G.K. An Aqueous Sol–gel Synthesis of Chromium(III) Doped Mesoporous Titanium Dioxide for Visible Light Photocatalysis. Mater. Res. Bull. 2011, 46, 914–921. [Google Scholar] [CrossRef]
- Martínez, C.; Canle, M.L.; Fernández, M.I.; Santaballa, J.A.; Faria, J. Applied Catalysis B: Environmental Kinetics and Mechanism of Aqueous Degradation of Carbamazepine by Heterogeneous Photocatalysis Using Nanocrystalline TiO2, ZnO and Multi-Walled Carbon Nanotubes—Anatase Composites. Appl. Catal. B Environ. 2011, 102, 563–571. [Google Scholar] [CrossRef]
- Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M. Preparation of S-Doped TiO2 Photocatalysts and Their Photocatalytic Activities under Visible Light. Appl. Catal. A Gen. 2004, 265, 115–121. [Google Scholar] [CrossRef]
- Nasution, H.W.; Purnama, E.; Kosela, S.; Gunlazuardi, J. Photocatalytic Reduction of CO2 on Copper-Doped Titania Catalysts Prepared by Improved-Impregnation Method. Catal. Commun. 2005, 6, 313–319. [Google Scholar] [CrossRef]
Starting material | 0.1000% | 0.3000% | 0.5000% | 1.0000% |
After 2 h | 0.0995% | 0.2950% | 0.5053% | 1.0180% |
Parameter | P25 | Co(0.1%) | Co(0.1%) a | Co(0.3%) | Co(0.5%) | Co(1.0%) | |
---|---|---|---|---|---|---|---|
Anatase | wt% | 75 | 69 | 70 | 68 | 63.5 | 71 |
Crystallite size (nm) | 21.99 | 26.37 | 25.24 | 25.05 | 26.93 | 24.70 | |
a = b (nm) | 0.3800 | 0.3796 | 0.3770 | 0.3769 | 0.3796 | 0.3795 | |
c (nm) | 0.9449 | 0.9490 | 0.9522 | 0.9530 | 0.9473 | 0.9486 | |
Rutile | wt% | 25 | 31 | 30 | 32 | 36.5 | 29 |
Crystallite size (nm) | 31.43 | 36.58 | 34.20 | 38.96 | 30.13 | 32.40 | |
a = b (nm) | 0.4610 | 0.4606 | 0.4603 | 0.4583 | 0.4603 | 0.4603 | |
c (nm) | 0.2962 | 0.2961 | 0.2956 | 0.2952 | 0.2966 | 0.2963 |
Mode | Photocatalyst | Vibration Wavenumber (cm−1) and Bond Length (Å) | ||
---|---|---|---|---|
Eg | P25 | 143 (dTi-Ti: 2.85) | 196 (dTi-Ti: 2.65) | 638 (dTi-O: 2x 1.89) |
P25 (this work) | 144 (dTi-Ti: 2.85) | 198 (dTi-Ti: 2.64) | 638 (dTi-O: 2x 1.89) | |
Co(0.1%)/TiO2 | 144 (dTi-Ti: 2.85) | 197 (dTi-Ti: 2.65) | 637 (dTi-O: 2x 1.89) | |
B1g | P25 | 396 (dTi-O: 3x 2.20) | ||
P25 (this work) | 396 (dTi-O: 3x 2.20) | |||
Co(0.1%)/TiO2 | 395 (dTi-O: 3x 2.20) | |||
A1g | P25 | 515 (dTi-O: 3x 2.03) | ||
P25 (this work) | 518 (dTi-O: 3x 2.02) | |||
Co(0.1%)/TiO2 | 515 (dTi-O: 3x 2.03) |
Sample | Co(0.1%)/TiO2 | Co(0.3%)/TiO2 | Co(0.5%)/TiO2 | Co(1%)/TiO2 |
---|---|---|---|---|
Co (Weight %) | 0.11 | 0.29 | 0.46 | 0.69 |
Photocatalyst | Co(0.1%)/TiO2 | |||
---|---|---|---|---|
BET | SBET/m2·g−1 | 39.58 ± 0.07 | ||
Constant C | 102.83 | |||
Vm (monolayer adsorption volume)/cm3·g−1 | 9.09 | |||
Parameter | Surface area (m2·g−1) | Pore volume (cm3·g−1) | Average pore width (4V/S Å) | |
t-plot external surface area | 39.50 | |||
t-plot micropore volume | −0.000284 | |||
BJH adsorption | 36.815 a | 0.055445 b | 60.241 | |
BJH desorption | 37.0671 a | 0.055555 b | 59.950 | |
D-H adsorption | 36.726 a | 60.238 | ||
D-H desorption | 36.9780 a | 59.943 | ||
Maximum pore volume at p/p°/cm3/g (STP) | 0.176986 | Median pore width | ||
0.016283 | 7.736 | |||
Average particle size/Å | 1515 |
Photocatalyst | Indirect Eg (eV) | Vis | UV | ||
---|---|---|---|---|---|
k·102 (min−1) | R2 | k·102 (min−1) | R2 | ||
TiO2-P25 | 3.3 | 0.060 ± 0.002 | 0.90 | 3.6 ± 0.8 | 0.97 |
0.1% Co/TiO2 | 2.4 | 1.1 ± 0.2 | 0.98 | 4.5 ± 0.7 | 0.96 |
0.3% Co/TiO2 | 2.3 | 0.8 ± 0.2 | 0.98 | 5.2 ± 0.3 | 0.90 |
0.5% Co/TiO2 | 2.3 | 0.41 ± 0.09 | 0.96 | 3.8 ± 0.5 | 0.96 |
1.0% Co/TiO2 | 2.3 | 0.7 ± 0.2 | 0.98 | 5.5 ± 0.9 | 0.86 |
Irradiation Source | UV | NUV-Vis |
---|---|---|
Φphotodegradation | 9.77 | 0.67 |
EEO/kW·L –1·s –1 | 766 | 156835 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belekbir, S.; El Azzouzi, M.; Rodríguez-Lorenzo, L.; El Hamidi, A.; Santaballa, J.A.; Canle, M. Cobalt Impregnation on Titania Photocatalysts Enhances Vis Phenol Photodegradation. Materials 2023, 16, 4134. https://doi.org/10.3390/ma16114134
Belekbir S, El Azzouzi M, Rodríguez-Lorenzo L, El Hamidi A, Santaballa JA, Canle M. Cobalt Impregnation on Titania Photocatalysts Enhances Vis Phenol Photodegradation. Materials. 2023; 16(11):4134. https://doi.org/10.3390/ma16114134
Chicago/Turabian StyleBelekbir, Soukayna, Mohammed El Azzouzi, Laura Rodríguez-Lorenzo, Adnane El Hamidi, Juan Arturo Santaballa, and Moisés Canle. 2023. "Cobalt Impregnation on Titania Photocatalysts Enhances Vis Phenol Photodegradation" Materials 16, no. 11: 4134. https://doi.org/10.3390/ma16114134
APA StyleBelekbir, S., El Azzouzi, M., Rodríguez-Lorenzo, L., El Hamidi, A., Santaballa, J. A., & Canle, M. (2023). Cobalt Impregnation on Titania Photocatalysts Enhances Vis Phenol Photodegradation. Materials, 16(11), 4134. https://doi.org/10.3390/ma16114134