Achieve High Dielectric and Energy-Storage Density Properties by Employing Cyanoethyl Cellulose as Fillers in PVDF-Based Polymer Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of P(VDF-HFP)-g-PGMA
2.3. Preparation of P(VDF-co-HFP)-g-PGMA/CEC Composites
2.4. Characterization
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bharti, V.; Zhang, Q.M. Dielectric study of the relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer system. Phys. Rev. B 2001, 63, 184103. [Google Scholar] [CrossRef]
- Chen, S.; Yan, X.; Liu, W.; Qiao, R.; Zhang, D. Polymer-based dielectric nanocomposites with high energy density via using natural sepiolite nanofibers. Chem. Eng. J. 2020, 401, 126095. [Google Scholar] [CrossRef]
- Song, S.; Xia, S.; Jiang, S.; Lv, X.; Sun, S.; Li, Q. A facile strategy to enhance the dielectric and mechanical properties of MWCNTs/PVDF composites with the aid of MMA-co-GMA copolymer. Materials 2018, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhang, Z.; Xu, N.; Yang, H. Dielectric properties of P(VDF-TrFE-CTFE) composites filled with surface-coated TiO2 Nanowires by SnO2 Nanoparticles. Polymers 2020, 12, 85. [Google Scholar] [CrossRef] [Green Version]
- Lanzalaco, S.; Galia, A.; Lazzano, F.; Mauro, R.R.; Scialdone, O. Utilization of poly(vinylchloride) and poly(vinylidenefluoride) as macroinitiators for ATRP polymerization of hydroxyethyl methacrylate: Electroanalytical and graft-copolymerization studies. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 2524–2536. [Google Scholar] [CrossRef]
- Liu, J.; Liao, J.; Liao, Y.; Zhang, Z. High field antiferroelectric-like dielectric of poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-poly(styrene-methyl methacrylate) for high pulse capacitors with high energy density and low loss. Polym. Chem. 2019, 10, 3547–3555. [Google Scholar] [CrossRef]
- Peng, B.; Wang, J.; Li, M.; Wang, M.; Tan, S.; Zhang, Z. Activation of different C-F bonds in fluoropolymers for Cu(0)-mediated single electron transfer radical polymerization. Polym. Chem. 2021, 12, 3132–3141. [Google Scholar] [CrossRef]
- Altomare, A.; Loos, K. Metal-free atom transfer radical polymerization of PVDF-based block copolymers catalyzed by organic photoredox catalysts. Macromol. Chem. Phys. 2022, 224, 2200259. [Google Scholar] [CrossRef]
- Akamatsu, K.; Shida, T.; Ochiai, A.; Fukase, R.; Ohashi, H.; Nakao, S.I.; Wang, X.L. Low-fouling polyvinylidene fluoride microfiltration membranes produced by grafting carboxybetaine polymers by atom transfer radical polymerization and activator generated by electron transfer-atom transfer radical ppolymerization. Ind. Eng. Chem. Res. 2022, 61, 14649–14655. [Google Scholar] [CrossRef]
- Theriot, J.C.; Lim, C.H.; Yang, H.; Ryan, M.D.; Musgrave, C.B.; Miyake, G.M. Organocatalyzed atom transfer radical polymerization driven by visible light. Science 2016, 352, 1082–1086. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Liao, J.; Peng, B.; Zhang, Y.; Tan, S.; Zhang, Z. Facile grafting modification of poly(vinylidene fluoride-co-trifluoroethylene) directly from inner CH=CH Bonds. Macromol. Chem. Phys. 2021, 222, 2100017. [Google Scholar] [CrossRef]
- Gong, H.-H.; Zhang, Y.; Cheng, Y.-P.; Lei, M.-X.; Zhang, Z.-C. The Application of Controlled/Living Radical Polymerization in Modification of PVDF-based Fluoropolymer. Chin. J. Polym. Sci. 2021, 39, 1110–1126. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, Y.; Niu, Z.; Zhang, Z. Copper(0) mediated single electron transfer controlled radical polymerization toward C-F Bonds on poly(vinylidene fluoride). Macromol Rapid Commun 2018, 39, 1700561. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Liu, E.; Zhang, Q.; Zhang, Z. Controlled hydrogenation of P(VDF-co-CTFE) to prepare P(VDF-co-TrFE-co-CTFE) in the presence of CuX (X = Cl, Br) complexes. Chem. Commun. 2011, 47, 4544–4546. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhu, N.; Fang, Z.; Li, Z.; Guo, K. Continuous flow copper-mediated reversible deactivation radical polymerizations. Eur. Polym. J. 2016, 80, 177–185. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, J.; Zhang, L.; Zong, C.; Xu, A.; Zhang, Y.; Geng, B.; Zhang, S. Enhanced breakdown strength and suppressed dielectric loss of polymer nanocomposites with BaTiO3 fillers modified by fluoropolymer. RSC Adv. 2020, 10, 7065–7072. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Shi, Z.; Liang, L.; Wei, S.; Wang, H.; Dastan, D.; Sun, K.; Fan, R. Layer-structured BaTiO3/P(VDF–HFP) composites with concurrently improved dielectric permittivity and breakdown strength toward capacitive energy-storage applications. J. Mater. Chem. C 2020, 8, 10257–10265. [Google Scholar] [CrossRef]
- Feng, Z.; Hao, Y.; Bi, M.; Dai, Q.; Bi, K. Highly dispersive Ba0.6Sr0.4TiO3 nanoparticles modified P(VDF-HFP)/PMMA composite films with improved energy storage density and efficiency. IET Nanodielectrics 2018, 1, 60–66. [Google Scholar] [CrossRef]
- Guo, Y.T.; Meng, N.; Xu, J.; Zhang, K.N.; Zhang, Q.Q.; Pawlikowska, E.; Szafran, M.; Gao, F. Microstructure and dielectric properties of Ba0.6Sr0.4TiO3/(acrylonitrile-butadiene-styrene)-poly(vinylidene fluoride) composites. Adv. Compos. Hybrid Mater. 2019, 2, 681–689. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, Y.; Zhan, S.; Sun, C.; Hu, G.; Yang, H.; Yuan, Q. Synergistically ultrahigh energy storage density and efficiency in designed sandwich-structured poly(vinylidene fluoride)-based flexible composite films induced by doping Na0.5Bi0.5TiO3 whiskers. J. Mater. Chem. A 2020, 8, 23427–23435. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Gong, S.; Ren, K. Significantly enhanced breakdown field for core-shell structured poly(vinylidene fluoride-hexafluoropropylene)/TiO2 nanocomposites for ultra-high energy density capacitor applications. J. Appl. Phys. 2018, 124, 154103. [Google Scholar] [CrossRef]
- Li, L.; Feng, R.; Zhang, Y.; Dong, L. Flexible, transparent and high dielectric-constant fluoropolymer-based nanocomposites with a fluoride-constructed interfacial structure. J. Mater. Chem. C 2017, 5, 11403–11410. [Google Scholar] [CrossRef]
- Jia, C.; Shao, Z.; Fan, H.; Feng, R.; Wang, F.; Wang, W.; Wang, J.; Zhang, D.; Lv, Y. Barium titanate as a filler for improving the dielectric property of cyanoethyl cellulose/antimony tin oxide nanocomposite films. Compos. Part A Appl. Sci. Manuf. 2016, 86, 1–8. [Google Scholar] [CrossRef]
- Jia, C.; Shao, Z.; Fan, H.; Wang, J. Preparation and dielectric properties of cyanoethyl cellulose/BaTiO3 flexible nanocomposite films. RSC Adv. 2015, 5, 15283–15291. [Google Scholar] [CrossRef]
- Xie, L.; Huang, X.; Yang, K.; Li, S.; Jiang, P. “Grafting to” route to PVDF-HFP-GMA/BaTiO3 nanocomposites with high dielectric constant and high thermal conductivity for energy storage and thermal management applications. J. Mater. Chem. A 2014, 2, 5244–5251. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, H.; Wu, D.Q.; Yin, D.M.; Zhu, N.; Guo, K.; Lu, C.H. PVDF-based matrix with covalent bonded BaTiO3 nanowires enabled ultrahigh energy density and dielectric properties. Chem. Eng. J. 2023, 451, 138391. [Google Scholar] [CrossRef]
- Duan, Y.; Li, Q.; Peng, B.; Tan, S.; Zhang, Z. Grafting modification of poly(vinylidene fluoride-hexafluoropropylene) via Cu(0) mediated controlled radical polymerization. React. Funct. Polym. 2021, 164, 104939. [Google Scholar] [CrossRef]
- Zavidovskiy, I.A.; Streletskiy, O.A.; Nuriahmetov, I.F.; Nishchak, O.Y.; Savchenko, N.F.; Tatarintsev, A.A.; Pavlikov, A.V. Highly Selective Polyene-Polyyne Resistive Gas Sensors: Response Tuning by Low-Energy Ion Irradiation. J. Compos. Sci. 2023, 7, 156. [Google Scholar] [CrossRef]
- Dai, Y.; Zhu, X. Improved dielectric properties and energy density of PVDF composites using PVP engineered BaTiO3 nanoparticles. Korean J. Chem. Eng. 2018, 35, 1570–1576. [Google Scholar] [CrossRef]
- Gong, L.; Chen, S.H.; Zhan, S.P.; Sun, X.D.; Yang, Y. An enhancement on the dielectric performance of poly(vinylidene fluoride)-based composite with graphene oxide-BaTiO3 hybrid. Nanocomposites 2019, 5, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Wang, L.; Gao, X.; Luo, H.; Liu, L.; Zhang, D. High breakdown strength and energy density in multilayer-structured ferroelectric composite. ACS Omega 2020, 5, 32660–32666. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Meng, N.; Zhang, Y.; Xu, J.; Pawlikowska, E.; Wu, C.; Szafran, M.; Gao, F. Characterization and performance of plate-like Ba0.6Sr0.4TiO3/Poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) composites with high permittivity and low loss. Polymer 2020, 203, 122777. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, T.; Zhang, C.; Zhang, Y.; Feng, Y.; Zhang, Y.; Chi, Q. Excellent energy storage performance for P(VDF-TrFE-CFE) composites by filling core–shell structured inorganic fibers. J. Mater. Sci. Mater. Electron. 2020, 31, 21128–21141. [Google Scholar] [CrossRef]
- Yang, L.; Yang, L.; Ma, K.; Wang, Y.; Song, T.; Gong, L.; Sun, J.; Zhao, L.; Yang, Z.; Xu, J.; et al. Free volume dependence of dielectric behaviour in sandwich-structured high dielectric performances of poly(vinylidene fluoride) composite films. Nanoscale 2021, 13, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xie, Y.; Liu, J.; Zhang, Z.; Zhuang, Q.; Kong, J. Improved energy storage performance of linear dielectric polymer nanodielectrics with polydopamine coated BN nanosheets. Polymers 2018, 10, 1349. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.; Chi, Q.; Feng, Y.; Zhang, Y.; Zhang, T.; Zhang, C.; Chen, Q.; Lei, Q. High energy storage density and efficiency in aligned nanofiber filled nanocomposites with multilayer structure. Compos. Part B Eng. 2020, 198, 108206. [Google Scholar] [CrossRef]
- Li, Y.; Yang, W.; Ding, S.; Fu, X.-Z.; Sun, R.; Liao, W.-H.; Wong, C.-P. Tuning dielectric properties and energy density of poly(vinylidene fluoride) nanocomposites by quasi core–shell structured BaTiO3@graphene oxide hybrids. J. Mater. Sci. Mater. Electron. 2017, 29, 1082–1092. [Google Scholar] [CrossRef]
- Liu, S.; Xiu, S.; Shen, B.; Zhai, J.; Kong, L.B. Dielectric Properties and Energy Storage Densities of Poly(vinylidenefluoride) Nanocomposite with Surface Hydroxylated Cube Shaped Ba0.6Sr0.4TiO3 Nanoparticles. Polymers 2016, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, J.; Zhang, Z.; Hao, Y.; Bi, K. Enhanced dielectric properties and energy storage density of PVDF nanocomposites by co-loading of BaTiO3 and CoFe2O4 nanoparticles. Adv. Compos. Hybrid Mater. 2020, 3, 58–65. [Google Scholar] [CrossRef]
- Liu, S.; Xue, S.; Zhang, W.; Zhai, J. Enhanced dielectric and energy storage density induced by surface-modified BaTiO3 nanofibers in poly(vinylidene fluoride) nanocomposites. Ceram. Int. 2014, 40, 15633–15640. [Google Scholar] [CrossRef]
- Chen, J.; Yu, X.; Yang, F.; Fan, Y.; Jiang, Y.; Zhou, Y.; Duan, Z. Enhanced energy density of polymer composites filled with BaTiO3@Ag nanofibers for pulse power application. J. Mater. Sci. Mater. Electron. 2017, 28, 8043–8050. [Google Scholar] [CrossRef]
- Ye, H.; Liu, W.; Chen, Y.; Huang, J.; Chen, W.; Chen, Z.; Xu, L.; Zhang, J. Enhanced Polarization in a Graphene/Poly(vinylidene fluoride-co-chlorotrifluoroethylene) Nanocomposite with a Hyperbranched Polyethylene-Grafted Poly(methyl methacrylate) Interface. Ind. Eng. Chem. Res. 2020, 59, 9969–9980. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Y.; Wang, S.; Gao, Z.; Xiong, C. Enhanced breakdown strength and energy storage of PVDF-based dielectric composites by incorporating exfoliated mica nanosheets. Polym. Compos. 2018, 40, 2088–2094. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Q.; Chen, F.; Zhao, Y.; Yang, W.; He, X.; Mao, X.; Yang, Y.; Xu, J. Enhanced breakdown strength and energy storage density in polyurea all-organic composite films. Mater. Res. Express 2019, 6, 115325. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Luo, M.; Yang, R.; Hu, X.; Lu, C. Achieve High Dielectric and Energy-Storage Density Properties by Employing Cyanoethyl Cellulose as Fillers in PVDF-Based Polymer Composites. Materials 2023, 16, 4201. https://doi.org/10.3390/ma16124201
Wu D, Luo M, Yang R, Hu X, Lu C. Achieve High Dielectric and Energy-Storage Density Properties by Employing Cyanoethyl Cellulose as Fillers in PVDF-Based Polymer Composites. Materials. 2023; 16(12):4201. https://doi.org/10.3390/ma16124201
Chicago/Turabian StyleWu, Deqi, Mingxuan Luo, Rui Yang, Xin Hu, and Chunhua Lu. 2023. "Achieve High Dielectric and Energy-Storage Density Properties by Employing Cyanoethyl Cellulose as Fillers in PVDF-Based Polymer Composites" Materials 16, no. 12: 4201. https://doi.org/10.3390/ma16124201
APA StyleWu, D., Luo, M., Yang, R., Hu, X., & Lu, C. (2023). Achieve High Dielectric and Energy-Storage Density Properties by Employing Cyanoethyl Cellulose as Fillers in PVDF-Based Polymer Composites. Materials, 16(12), 4201. https://doi.org/10.3390/ma16124201