Microplotter Printing of a Miniature Flexible Supercapacitor Electrode Based on Hierarchically Organized NiCo2O4 Nanostructures
Abstract
:1. Introduction
2. Materials and Methods
2.1. NiCo2O4 Nanopowder Obtaining
2.2. Microplotter Printing of Active Electrode Layer
2.3. Instrumentation
3. Results and Discussion
3.1. Investigation of the Prepared Nanopowder
3.2. Characterization of the Printed NiCo2O4 Film
3.3. Electrochemical Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Xie, Y.; You, Y.; Yuan, J.; Xu, Q.; Xie, H.; Chen, Y. Rational Design of Electrode Materials for Advanced Supercapacitors: From Lab Research to Commercialization. Adv. Funct. Mater. 2023, 33, 2213095. [Google Scholar] [CrossRef]
- Yuan, M.; Luo, F.; Wang, Z.; Yu, J.; Li, H.; Chen, X. Smart Wearable Band-Aid Integrated with High-Performance Micro-Supercapacitor, Humidity and Pressure Sensor for Multifunctional Monitoring. Chem. Eng. J. 2023, 453, 139898. [Google Scholar] [CrossRef]
- Xia, X.; Yang, J.; Liu, Y.; Zhang, J.; Shang, J.; Liu, B.; Li, S.; Li, W. Material Choice and Structure Design of Flexible Battery Electrode. Adv. Sci. 2023, 10, 2204875. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.-Q.; Zhang, C.-C.; Liu, H.; Zhu, L.; Sui, Y.-W.; Feng, X.-J.; Wei, W.-Q.; Zhang, H.; Cao, P. MXene-Wrapped ZnCo2S4 Core–Shell Nanospheres via Electrostatic Self-Assembly as Positive Electrode Materials for Asymmetric Supercapacitors. Rare Met. 2022, 41, 2633–2644. [Google Scholar] [CrossRef]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on Supercapacitors: Technologies and Materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Pandolfo, A.G.; Hollenkamp, A.F. Carbon Properties and Their Role in Supercapacitors. J. Power Sources 2006, 157, 11–27. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Wang, Y.; Cheng, T.; Yao, L.-Q.; Li, X.; Lai, W.-Y.; Huang, W. Printed Supercapacitors: Materials, Printing and Applications. Chem. Soc. Rev. 2019, 48, 3229–3264. [Google Scholar] [CrossRef]
- Dubal, D.P.; Kim, J.G.; Kim, Y.; Holze, R.; Lokhande, C.D.; Kim, W.B. Supercapacitors Based on Flexible Substrates: An Overview. Energy Technol. 2014, 2, 325–341. [Google Scholar] [CrossRef]
- Palchoudhury, S.; Ramasamy, K.; Gupta, R.K.; Gupta, A. Flexible Supercapacitors: A Materials Perspective. Front. Mater. 2019, 5, 83. [Google Scholar] [CrossRef] [Green Version]
- Waseem, S.; Dubey, P.; Singh, M.; Sundriyal, S.; Maheshwari, P.H. Chemically Oxidized Carbon Paper as a Free-Standing Electrode for Supercapacitor: An Insight into Surface and Diffusion Contribution. ChemistrySelect 2023, 8, e202204377. [Google Scholar] [CrossRef]
- Deng, F.; Yu, L.; Cheng, G.; Lin, T.; Sun, M.; Ye, F.; Li, Y. Synthesis of Ultrathin Mesoporous NiCo2O4 Nanosheets on Carbon Fiber Paper as Integrated High-Performance Electrodes for Supercapacitors. J. Power Sources 2014, 251, 202–207. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, F.; He, L.; Zhang, S.; Luo, H.; Hu, B.; Zhou, M.; Fang, L. NiCo2O4 Nanoneedle-Nanosheet Hybrid Structure on CC Substrate for High-Performance Flexible Supercapacitors. J. Alloys Compd. 2022, 902, 163634. [Google Scholar] [CrossRef]
- Li, L.; Lou, Z.; Chen, D.; Jiang, K.; Han, W.; Shen, G. Recent Advances in Flexible/Stretchable Supercapacitors for Wearable Electronics. Small 2018, 14, 1702829. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor Electrode Materials: Nanostructures from 0 to 3 Dimensions. Energy Environ. Sci. 2015, 8, 702–730. [Google Scholar] [CrossRef] [Green Version]
- Deka, S. Nanostructured Mixed Transition Metal Oxide Spinels for Supercapacitor Applications. Dalt. Trans. 2023, 52, 839–856. [Google Scholar] [CrossRef]
- Jose, V.; Jose, V.; Freeda Christy, C.E.; Nesaraj, A.S. Spinel-Based Electrode Materials for Application in Electrochemical Supercapacitors—Present Status and Future Prospects. Inorg. Nano-Met. Chem. 2022, 52, 1449–1462. [Google Scholar] [CrossRef]
- Fe, M.; Dong, L.; Wang, Z.; Li, Y.; Jin, C.; Dong, F.; Zhao, W.; Qin, C.; Wang, Z. Spinel-Structured, Multi-Component Transition Metal Oxide Anode Material. Batteries 2023, 9, 54. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Y.; Xia, Y. Electrochemical Capacitors: Mechanism, Materials, Systems, Characterization and Applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef]
- Wu, P.; Cheng, S.; Yao, M.; Yang, L.; Zhu, Y.; Liu, P.; Xing, O.; Zhou, J.; Wang, M.; Luo, H.; et al. A Low-Cost, Self-Standing NiCo2O4 @CNT/CNT Multilayer Electrode for Flexible Asymmetric Solid-State Supercapacitors. Adv. Funct. Mater. 2017, 27, 1702160. [Google Scholar] [CrossRef]
- Sundriyal, P.; Bhattacharya, S. Textile-Based Supercapacitors for Flexible and Wearable Electronic Applications. Sci. Rep. 2020, 10, 13259. [Google Scholar] [CrossRef]
- Hao, C.; Zhou, S.; Wang, J.; Wang, X.; Gao, H.; Ge, C. Preparation of Hierarchical Spinel NiCo2O4 Nanowires for High-Performance Supercapacitors. Ind. Eng. Chem. Res. 2018, 57, 2517–2525. [Google Scholar] [CrossRef]
- Hu, H.; Guan, B.; Xia, B.; Lou, X.W. Designed Formation of Co3O4/NiCo2O4 Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. J. Am. Chem. Soc. 2015, 137, 5590–5595. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Cui, D.; Dai, J.; Xiang, J.; Wu, F. Morphology Controllable NiCo2O4 Nanostructure for Excellent Energy Storage Device and Overall Water Splitting. Sustain. Mater. Technol. 2020, 24, e00151. [Google Scholar] [CrossRef]
- Shen, L.; Che, Q.; Li, H.; Zhang, X. Mesoporous NiCo2O4 Nanowire Arrays Grown on Carbon Textiles as Binder-Free Flexible Electrodes for Energy Storage. Adv. Funct. Mater. 2014, 24, 2630–2637. [Google Scholar] [CrossRef]
- Ji, J.; Xu, J.; Fan, G.; Guo, T.; Yang, L.; Li, F. Controlled Synthesis of CeOx-NiCo2O4 Nanocomposite with 3D Umbrella-Shaped Hierarchical Structure: A Sharp-Tip Enhanced Electrocatalyst for Efficient Oxygen Evolution Reaction over a Broad PH Region. Electrochim. Acta 2021, 382, 138345. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Badhulika, S. Hierarchical Architectured Dahlia Flower-Like NiCo2O4/NiCoSe2 as a Bifunctional Electrode for High-Energy Supercapacitor and Methanol Fuel Cell Application. Energy Fuels 2021, 35, 9646–9659. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Z.; Xin, N.; Ying, Y.; Shi, W. High-Performance Supercapacitor Based on Highly Active P-Doped One-Dimension/Two-Dimension Hierarchical NiCo2O4/NiMoO4 for Efficient Energy Storage. J. Colloid Interface Sci. 2021, 601, 793–802. [Google Scholar] [CrossRef]
- Alshanableh, A.; Albiss, B.A.; Aljawrneh, B.; Alrousan, S.; Al-Othman, A.; Megdadi, H. Novel and Flexible Asymmetric Supercapacitors Based on NiCo2O4 Nanosheets Coated on Al and Cu Tapes for Wearable Devices Applications. SN Appl. Sci. 2023, 5, 120. [Google Scholar] [CrossRef]
- Azizi, S.; Seifi, M.; Moghadam, M.T.T.; Askari, M.B.; Varma, R.S. High-Capacity MnCo2O4/NiCo2O4 as Electrode Materials for Electrochemical Supercapacitors. J. Phys. Chem. Solids 2023, 174, 111176. [Google Scholar] [CrossRef]
- Pourshahmir, M.; Ghasemi, S.; Hosseini, S.R. Nickel–Cobalt Layered Double Hydroxide/NiCo2S4/g-C3N4 Nanohybrid for High Performance Asymmetric Supercapacitor. Int. J. Hydrogen Energy 2023, 48, 8127–8143. [Google Scholar] [CrossRef]
- Yan, M.; Jiang, F.; Liu, Y.; Sun, L.; Bai, H.; Zhu, F.; Shi, W. Flexible Mixed Metal Oxide Hollow Spheres/RGO Hybrid Lamellar Films for High Performance Supercapacitors. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 612, 125902. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, X.; Ju, T.; Ying, Z.; Xie, J.; Zhang, Y. Preparation and Electrochemical Properties of NiCo2O4 Nanorods Grown on Nickel Foam Filled by Carbon-Coated Attapulgite for Supercapacitors. Mater. Res. Express 2019, 6, 125524. [Google Scholar] [CrossRef]
- Zhang, G.; Lou, X.W. Controlled Growth of NiCo2O4 Nanorods and Ultrathin Nanosheets on Carbon Nanofibers for High-Performance Supercapacitors. Sci. Rep. 2013, 3, 1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yewale, M.A.; Kadam, R.A.; Kaushik, N.K.; Linh, N.N.; Teli, A.M.; Shin, J.C.; Lingamdinne, L.P.; Koduru, J.R.; Shin, D.K. Mesoporous Hexagonal Nanorods of NiCo2O4 Nanoparticles via Hydrothermal Route for Supercapacitor Application. Chem. Phys. Lett. 2022, 800, 139654. [Google Scholar] [CrossRef]
- Arbaz, S.J.; Sekhar, S.C.; Ramulu, B.; Yu, J.S. Binder-free Preparation of Bimetallic Oxide Vertical Nanosheet Arrays toward High-rate Performance and Energy Density Supercapacitors. Int. J. Energy Res. 2021, 45, 13999–14009. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, X.; Zhang, Y.; Jia, J.; He, X.; Yu, L.; Pan, Y.; Liao, J.; Sun, M.; He, J. Interconnected NiCo2O4 Nanosheet Arrays Grown on Carbon Cloth as a Host, Adsorber and Catalyst for Sulfur Species Enabling High-Performance Li–S Batteries. Nanoscale Adv. 2021, 3, 1690–1698. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Simonenko, E.P.; Vlasov, I.S.; Volkov, I.A.; Kuznetsov, N.T. Microplotter Printing of Hierarchically Organized Planar NiCo2O4 Nanostructures. Russ. J. Inorg. Chem. 2022, 67, 1848–1854. [Google Scholar] [CrossRef]
- Isacfranklin, M.; Ravi, G.; Yuvakkumar, R.; Kumar, P.; Velauthapillai, D.; Saravanakumar, B.; Thambidurai, M.; Dang, C. Urchin like NiCo2O4/RGO Nanocomposite for High Energy Asymmetric Storage Applications. Ceram. Int. 2020, 46, 16291–16297. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Mokrushin, A.S.; Gorobtsov, P.Y.; Lizunova, A.A.; Grafov, O.Y.; Simonenko, E.P.; Kuznetsov, N.T. Microplotter Printing of Hierarchically Organized NiCo2O4 Films for Ethanol Gas Sensing. Chemosensors 2023, 11, 138. [Google Scholar] [CrossRef]
- Yan, S.; Luo, S.; Sun, M.; Wang, Q.; Zhang, Y.; Liu, X. Facile Hydrothermal Synthesis of Urchin-like NiCo2O4 as Advanced Electrochemical Pseudocapacitor Materials. Int. J. Energy Res. 2021, 45, 20186–20198. [Google Scholar] [CrossRef]
- Pore, O.C.; Fulari, A.V.; Chavare, C.D.; Sawant, D.S.; Patil, S.S.; Shejwal, R.V.; Fulari, V.J.; Lohar, G.M. Synthesis of NiCo2O4 Microflowers by Facile Hydrothermal Method: Effect of Precursor Concentration. Chem. Phys. Lett. 2023, 824, 140551. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, T.; Qian, F.; Han, T.Y.-J.; Duoss, E.B.; Kuntz, J.D.; Spadaccini, C.M.; Worsley, M.A.; Li, Y. Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores. Nano Lett. 2016, 16, 3448–3456. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.; Mei, H.; Tan, Y.; Zhao, Y.; Huang, W.; Cheng, L. A 3D-Printed Stretchable Structural Supercapacitor with Active Stretchability/Flexibility and Remarkable Volumetric Capacitance. J. Mater. Chem. A 2020, 8, 13646–13658. [Google Scholar] [CrossRef]
- Sundriyal, P.; Bhattacharya, S. Scalable Micro-Fabrication of Flexible, Solid-State, Inexpensive, and High-Performance Planar Micro-Supercapacitors through Inkjet Printing. ACS Appl. Energy Mater. 2019, 2, 1876–1890. [Google Scholar] [CrossRef]
- Giannakou, P.; Slade, R.C.T.; Shkunov, M. Cyclic Voltammetry Studies of Inkjet-Printed NiO Supercapacitors: Effect of Substrates, Printing and Materials. Electrochim. Acta 2020, 353, 136539. [Google Scholar] [CrossRef]
- Seol, M.-L.; Nam, I.; Ribeiro, E.L.; Segel, B.; Lee, D.; Palma, T.; Wu, H.; Mukherjee, D.; Khomami, B.; Hill, C.; et al. All-Printed In-Plane Supercapacitors by Sequential Additive Manufacturing Process. ACS Appl. Energy Mater. 2020, 3, 4965–4973. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Pozharnitskaya, V.M.; Simonenko, E.P.; Glumov, O.V.; Melnikova, N.A.; Sevastyanov, V.G.; Kuznetsov, N.T. Pen Plotter Printing of MnOx Thin Films Using Manganese Alkoxoacetylacetonate. Russ. J. Inorg. Chem. 2021, 66, 1416–1424. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Mokrushin, A.S.; Solovey, V.R.; Pozharnitskaya, V.M.; Simonenko, E.P.; Glumov, O.V.; Melnikova, N.A.; Lizunova, A.A.; et al. Pen Plotter Printing of Co3O4 Thin Films: Features of the Microstructure, Optical, Electrophysical and Gas-Sensing Properties. J. Alloys Compd. 2020, 832, 154957. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Vlasov, I.S.; Solovey, V.R.; Shelaev, A.V.; Simonenko, E.P.; Glumov, O.V.; Melnikova, N.A.; Kozodaev, M.G.; et al. Microplotter Printing of Planar Solid Electrolytes in the CeO2–Y2O3 System. J. Colloid Interface Sci. 2021, 588, 209–220. [Google Scholar] [CrossRef]
- Simonenko, N.P.; Kadyrov, N.S.; Simonenko, T.L.; Simonenko, E.P.; Sevastyanov, V.G.; Kuznetsov, N.T. Preparation of ZnS Nanopowders and Their Use in the Additive Production of Thick-Film Structures. Russ. J. Inorg. Chem. 2021, 66, 1283–1288. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, I.Y.; et al. Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovhal, M.M.; Kumar, N.; Lee, H.B.; Tyagi, B.; Ko, K.-J.; Boud, S.; Kang, J.-W. Roll-to-Roll 3D Printing of Flexible and Transparent All-Solid-State Supercapacitors. Cell Rep. Phys. Sci. 2021, 2, 100562. [Google Scholar] [CrossRef]
- Zhang, C.J.; Kremer, M.P.; Seral-Ascaso, A.; Park, S.-H.; McEvoy, N.; Anasori, B.; Gogotsi, Y.; Nicolosi, V. Stamping of Flexible, Coplanar Micro-Supercapacitors Using MXene Inks. Adv. Funct. Mater. 2018, 28, 1705506. [Google Scholar] [CrossRef]
- Lu, Y.; Li, L.; Wang, X.; Chen, D. Directly Transfer-Printing Tailored Micro-Supercapacitors. Mater. Today Commun. 2021, 27, 102342. [Google Scholar] [CrossRef]
- Jost, K.; Stenger, D.; Perez, C.R.; McDonough, J.K.; Lian, K.; Gogotsi, Y.; Dion, G. Knitted and Screen Printed Carbon-Fiber Supercapacitors for Applications in Wearable Electronics. Energy Environ. Sci. 2013, 6, 2698. [Google Scholar] [CrossRef]
- Li, H.; Liu, S.; Li, X.; Wu, Z.-S.; Liang, J. Screen-Printing Fabrication of High Volumetric Energy Density Micro-Supercapacitors Based on High-Resolution Thixotropic-Ternary Hybrid Interdigital Micro-Electrodes. Mater. Chem. Front. 2019, 3, 626–635. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Gao, W.; Wang, Q.; Umar, A. Effect of Fluoride on the Morphology and Electrochemical Property of Co3O4 Nanostructures for Hydrazine Detection. Materials 2018, 11, 207. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.; Zhong, J.; Xu, H.; Huang, Y.-C.; Hu, Z.; Chen, B.; Zhang, Y.; Ni, M.; Xu, X.; Zhou, W.; et al. A Universal Chemical-Induced Tensile Strain Tuning Strategy to Boost Oxygen-Evolving Electrocatalysis on Perovskite Oxides. Appl. Phys. Rev. 2022, 9, 011422. [Google Scholar] [CrossRef]
- Marimuthu, G.; Palanisamy, G.; Pazhanivel, T.; Bharathi, G.; Cristopher, M.M.; Jeyadheepan, K. Nanorod like NiCo2O4 Nanostructure for High Sensitive and Selective Ammonia Gas Sensor. J. Mater. Sci. Mater. Electron. 2020, 31, 1951–1959. [Google Scholar] [CrossRef]
- Zakutayev, A.; Paudel, T.R.; Ndione, P.F.; Perkins, J.D.; Lany, S.; Zunger, A.; Ginley, D.S. Cation Off-Stoichiometry Leads to High p-Type Conductivity and Enhanced Transparency in Co2ZnO4 and Co2NiO4 Thin Films. Phys. Rev. B 2012, 85, 085204. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Wei, L.; Lin, Z.; Liu, Q.; Chen, Y.; Lin, Y.; Huang, Z. Hierarchical Flower-like NiCo2O4@TiO2 Hetero-Nanosheets as Anodes for Lithium Ion Batteries. RSC Adv. 2017, 7, 47602–47613. [Google Scholar] [CrossRef] [Green Version]
- Pathak, M.; Mutadak, P.; Mane, P.; More, M.A.; Chakraborty, B.; Late, D.J.; Rout, C.S. Enrichment of the Field Emission Properties of NiCo2O4 Nanostructures by UV/Ozone Treatment. Mater. Adv. 2021, 2, 2658–2666. [Google Scholar] [CrossRef]
- Haripriya, M.; Sivasubramanian, R.; Ashok, A.M.; Hussain, S.; Amarendra, G. Hydrothermal Synthesis of NiCo2O4–NiO Nanorods for High Performance Supercapacitors. J. Mater. Sci. Mater. Electron. 2019, 30, 7497–7506. [Google Scholar] [CrossRef]
- Wang, N.; Yao, M.; Zhao, P.; Zhang, Q.; Hu, W. Highly Mesoporous Structure Nickel Cobalt Oxides with an Ultra-High Specific Surface Area for Supercapacitor Electrode Materials. J. Solid State Electrochem. 2016, 20, 1429–1434. [Google Scholar] [CrossRef]
- Bhojane, P.; Sinha, L.; Goutam, U.K.; Shirage, P.M. A 3D Mesoporous Flowers of Nickel Carbonate Hydroxide Hydrate for High-Performance Electrochemical Energy Storage Application. Electrochim. Acta 2019, 296, 112–119. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Ma, M.; Ni, G.; Sun, Z.; Liu, J.; Wu, Y. 3D Hierarchical Urchin-Like Ni0.3Co0.6Cu0.1(CO3)0.5(OH) Microspheres for Supercapacitors with High Specific Capacitance. Energy Fuels 2021, 35, 20358–20366. [Google Scholar] [CrossRef]
- Waghmode, R.B.; Torane, A.P. Hierarchical 3D NiCo2O4 Nanoflowers as Electrode Materials for High Performance Supercapacitors. J. Mater. Sci. Mater. Electron. 2016, 27, 6133–6139. [Google Scholar] [CrossRef]
- Rakhi, R.B.; Chen, W.; Cha, D.; Alshareef, H.N. High Performance Supercapacitors Using Metal Oxide Anchored Graphene Nanosheet Electrodes. J. Mater. Chem. 2011, 21, 16197. [Google Scholar] [CrossRef]
- Khalid, S.; Cao, C.; Ahmad, A.; Wang, L.; Tanveer, M.; Aslam, I.; Tahir, M.; Idrees, F.; Zhu, Y. Microwave Assisted Synthesis of Mesoporous NiCo2O4 Nanosheets as Electrode Material for Advanced Flexible Supercapacitors. RSC Adv. 2015, 5, 33146–33154. [Google Scholar] [CrossRef]
- Dhas, S.D.; Maldar, P.S.; Patil, M.D.; Nagare, A.B.; Waikar, M.R.; Sonkawade, R.G.; Moholkar, A.V. Synthesis of NiO Nanoparticles for Supercapacitor Application as an Efficient Electrode Material. Vacuum 2020, 181, 109646. [Google Scholar] [CrossRef]
- Niveditha, C.V.; Aswini, R.; Jabeen Fatima, M.J.; Ramanarayan, R.; Pullanjiyot, N.; Swaminathan, S. Feather like Highly Active Co3O4 Electrode for Supercapacitor Application: A Potentiodynamic Approach. Mater. Res. Express 2018, 5, 065501. [Google Scholar] [CrossRef]
- Biswal, A.; Panda, P.K.; Acharya, A.N.; Mohapatra, S.; Swain, N.; Tripathy, B.C.; Jiang, Z.-T.; Minakshi Sundaram, M. Role of Additives in Electrochemical Deposition of Ternary Metal Oxide Microspheres for Supercapacitor Applications. ACS Omega 2020, 5, 3405–3417. [Google Scholar] [CrossRef]
- Sharma, P.; Minakshi Sundaram, M.; Watcharatharapong, T.; Laird, D.; Euchner, H.; Ahuja, R. Zn Metal Atom Doping on the Surface Plane of One-Dimesional NiMoO4 Nanorods with Improved Redox Chemistry. ACS Appl. Mater. Interfaces 2020, 12, 44815–44829. [Google Scholar] [CrossRef]
Electrode Material | Technology | Specific Capacitance | Reference |
---|---|---|---|
NiCo2O4 nanosheets | Microwave-assisted heating method | 292.5 F/g at 1 A/g | [69] |
NiO | Hydrothermal synthesis | 132 F/g at 5 mV/s | [70] |
Feather-like Co3O4 | Electrodeposition | 397 F/g at 20 mV/s | [71] |
(Co–Ni–Cu) mixed oxides nanospheres | Galvanostatic electrodeposition | 525 F/g at 1 mA | [72] |
NiMoO4 nanorods | Coprecipitation | 255 F/g at 2 mA/cm2 | [73] |
urchin-like NiCo2O4 | Hydrothermal synthesis | 420 F/g at 1 A/g | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Simonenko, E.P.; Kuznetsov, N.T. Microplotter Printing of a Miniature Flexible Supercapacitor Electrode Based on Hierarchically Organized NiCo2O4 Nanostructures. Materials 2023, 16, 4202. https://doi.org/10.3390/ma16124202
Simonenko TL, Simonenko NP, Gorobtsov PY, Simonenko EP, Kuznetsov NT. Microplotter Printing of a Miniature Flexible Supercapacitor Electrode Based on Hierarchically Organized NiCo2O4 Nanostructures. Materials. 2023; 16(12):4202. https://doi.org/10.3390/ma16124202
Chicago/Turabian StyleSimonenko, Tatiana L., Nikolay P. Simonenko, Philipp Yu. Gorobtsov, Elizaveta P. Simonenko, and Nikolay T. Kuznetsov. 2023. "Microplotter Printing of a Miniature Flexible Supercapacitor Electrode Based on Hierarchically Organized NiCo2O4 Nanostructures" Materials 16, no. 12: 4202. https://doi.org/10.3390/ma16124202
APA StyleSimonenko, T. L., Simonenko, N. P., Gorobtsov, P. Y., Simonenko, E. P., & Kuznetsov, N. T. (2023). Microplotter Printing of a Miniature Flexible Supercapacitor Electrode Based on Hierarchically Organized NiCo2O4 Nanostructures. Materials, 16(12), 4202. https://doi.org/10.3390/ma16124202