Investigation of Electrochromic, Combinatorial TiO2-SnO2 Mixed Layers by Spectroscopic Ellipsometry Using Different Optical Models
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Comparison of the Optical Models
4. Discussion
Electrochromic Measurements
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Granqvist, C.G. Handbook of Inorganic Electrochromic Materials; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Lu, Y.; Liu, L.; Mandler, D.; Lee, P.S. High switching speed and coloration efficiency of titanium-doped vanadium oxide thin film electrochromic devices. J. Mater. Chem. C 2013, 1, 7380–7386. [Google Scholar] [CrossRef]
- Livage, J.; Ganguli, D. Sol-gel electrochromic coatings and devices: A review. Sol. Energy Mater. Sol. Cells 2001, 68, 365–381. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Wang, C.-M.; Kao, K.-S.; Chen, Y.-C.; Liu, C.-C. Electrochromic properties of MoO3 thin films derived by a sol–gel process. J. Sol Gel Sci. Technol. 2010, 53, 51–58. [Google Scholar] [CrossRef]
- Hsu, C.S.; Chan, C.C.; Huang, H.T.; Peng, C.H.; Hsu, W.C. Electrochromic properties of nanocrystalline MoO3 thin films. Thin Solid Film. 2008, 516, 4839–4844. [Google Scholar] [CrossRef]
- Ahmed, M.I.; Jahin, H.S.; Dessouki, H.A.; Nassar, M.Y. Synthesis and characterization of γ-Al2O3 and α-Al2O3 nanoparticles using a facile, inexpensive autocombustion approach. Egypt. J. Chem. 2021, 64, 2509–2515. [Google Scholar]
- Basavaraj, M.K.; Kulkarni, S.N.; Elangovan, K.; Shankar, S. Effect of Concentration of Al2O3 Nano Particles in Base Fluid on Thermal and Flow Properties to Enhance the Heat Transfer Rate. Int. J. Eng. Res. Technol. (IJERT) 2021, 10. [Google Scholar] [CrossRef]
- Madhavi, V.; Jeevan Kumar, P.; Kondaiah, P.; Hussain, O.M.; Uthanna, S. Effect of molybdenum doping on the electrochromic properties of tungsten oxide thin films by RF magnetron sputtering. Ionics 2014, 20, 1737–1745. [Google Scholar] [CrossRef]
- Prameelaand, C.; Srinivasarao, K. Characterization of (MoO3)x-(Wo3)1−x composites. Int. J. Appl. Eng. Res. 2015, 10, 9865–9875. [Google Scholar]
- Ivanova, T.; Gesheva, K.A.; Kalitzova, M.; Hamelmann, F.; Luekermann, F.; Heinzmann, U. Electrochromic mixed films based on WO3 and MoO3 obtained by an APCVD method. J. Optoelectron. Adv. Mater. 2009, 11, 1513–1516. [Google Scholar]
- Novinrooz, A.; Sharbatdaran, M.; Noorkojouri, H. Structural and optical properties of WO3 electrochromic layers prepared by the sol-gel method. Cent. Eur. Sci. J. 2005, 3, 456–466. [Google Scholar] [CrossRef]
- Canta, M.P.; Cisneros, J.I.; Torresi, R.M. Electrochromic behavior of sputtered titanium oxide thin films. Thin Solid Film. 1995, 259, 70–74. [Google Scholar] [CrossRef]
- Fujiwara, H. Spectroscopic Ellipsometry Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007; Print ISBN 9780470016084; Online ISBN 9780470060193. [Google Scholar] [CrossRef]
- Zimmer, A.; Gilliot, M.; Broch, L.; Boulanger, C.; Stein, N.; Horwat, D. Morphological and chemical dynamics upon electrochemical cyclic sodiation of electrochromic tungsten oxide coatings extracted by in situ ellipsometry. Appl. Opt. 2020, 59, 3766–3772. [Google Scholar] [CrossRef] [PubMed]
- Hale, J.S.; DeVries, M.; Dworak, B.; Woollam, J.A. Visible and infrared optical constants of electrochromic materials for emissivity modulation applications. Thin Solid Film. 1998, 313, 205–209. [Google Scholar] [CrossRef]
- Sauvet, K.; Rougier, A.; Sauques, L. Electrochromic WO3 thin films active in the IR region. Sol. Energy Mater. Sol. Cells 2008, 92, 209–215. [Google Scholar] [CrossRef]
- Shan, A.; Fried, M.; Juhasz, G.; Major, C.; Polgár, O.; Németh, Á.; Petrik, P.; Dahal, L.R.; Chen, J.; Huang, Z. High-speed imaging/mapping spectroscopic ellipsometry for in-line analysis of roll-to-roll thin-film photovoltaics. IEEE J. Photovolt. 2014, 4, 355–361. [Google Scholar] [CrossRef]
- Koirala, P.; Tan, X.; Li, J.; Podraza, N.J.; Marsillac, S.; Rockett, A.; Collins, R.W. Mapping spectroscopic ellipsometry of CdTe solar cells for property-performance correlations. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 674–679. [Google Scholar]
- Dahal, L.R.; Li, J.; Stoke, J.A.; Huang, Z.; Shan, A.; Ferlauto, A.S.; Wronski, C.R.; Collins, R.W.; Podraza, N.J. Applications of real-time and mapping spectroscopic ellipsometry for process development and optimization in hydrogenated silicon thin-film photovoltaics technology. Sol. Energy Mater. Sol. Cells 2014, 129, 32–56. [Google Scholar] [CrossRef]
- Aryal, P.; Pradhan, P.; Attygalle, D.; Ibdah, A.-R.; Aryal, K.; Ranjan, V.; Marsillac, S.; Podraza, N.J.; Collins, R.W. Real-time, in-line, and mapping spectroscopic ellipsometry for applications in Cu (in Ga) Se metrology. IEEE J. Photovolt. 2014, 4, 333–339. [Google Scholar] [CrossRef]
- Petrik, P.; Fried, M. Mapping and Imaging of Thin Films on Large Surfaces: A review. Phys. Status Solidi 2022, 219, 2100800. [Google Scholar] [CrossRef]
- Fried, M.; Bogar, R.; Takacs, D.; Labadi, Z.; Horvath, Z.E.; Zolnai, Z. Investigation of Combinatorial WO3-MoO3 Mixed Layers by Spectroscopic Ellipsometry Using Different Optical Models. Nanomaterials 2022, 12, 2421. [Google Scholar] [CrossRef]
- Şilik, E.; Pat, S.; Özen, S.; Mohammadigharehbagh, R.; Yudar, H.H.; Musaoğlu, C.; Korkmaz, Ş. Electrochromic properties of TiO2 thin films grown by thermionic vacuum arc method. Thin Solid Film. 2017, 640, 27–32. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, N.; Makgwane, P.R.; Chauhan, N.S.; Kumari, K.; Rani, M.; Maken, S. TiO2/SnO2 nano-composite: New insights in synthetic, structural, optical and photocatalytic aspects. Inorg. Chim. Acta 2022, 529, 120640. [Google Scholar] [CrossRef]
- Rajput, R.B.; Jamble, S.N.; Kale, R.B. A review on TiO2/SnO2 heterostructures as a photocatalyst for the degradation of dyes and organic pollutants. J. Environ. Manag. 2022, 307, 114533. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.jawoollam.com/products/m-2000-ellipsometer (accessed on 12 July 2022).
- Bruggeman, D.A.G. Dielectric constant and conductivity of mixtures of isotropic materials. Ann. Phys. 1935, 24, 636–664. [Google Scholar] [CrossRef]
- Jellison, G.E., Jr.; Modine, F.A. Parameterization of the optical functions of amorphous materials in the inter band region. Appl. Phys. Lett. 1996, 69, 371–373. [Google Scholar] [CrossRef]
X (cm) | MSE from EMA | MSE from 2-TL | Thickness [nm] from EMA | Thickness [nm] from 2-TL |
---|---|---|---|---|
0 | 29.8 | 31.0 | 549.2 | 545.3 |
1 | 35.2 | 35.6 | 516.7 | 515.7 |
2 | 37.8 | 37.0 | 485.2 | 482.5 |
3 | 40.3 | 40.5 | 457.1 | 455.7 |
4 | 40.7 | 39.8 | 433.3 | 433.2 |
5 | 43.7 | 44.1 | 412.5 | 413.4 |
6 | 47.4 | 46.8 | 395.6 | 397.1 |
7 | 51.8 | 510 | 380.4 | 384.2 |
8 | 52.2 | 49.9 | 367.8 | 372.7 |
9 | 52.9 | 48.8 | 359.7 | 364.8 |
10 | 53.3 | 48.5 | 352.8 | 359.1 |
11 | 57.1 | 49.7 | 348.1 | 357.6 |
12 | 59.2 | 50.2 | 346.8 | 357.9 |
13 | 58.5 | 48.8 | 349.8 | 360.9 |
14 | 58.7 | 46.5 | 356.5 | 368.3 |
15 | 59.9 | 44.4 | 366.5 | 381.4 |
16 | 58.1 | 41.3 | 379.8 | 395.2 |
17 | 54.6 | 38.0 | 395.4 | 410.1 |
18 | 50.3 | 34.9 | 412.3 | 426.2 |
19 | 46.1 | 32.5 | 431.1 | 443.7 |
20 | 42.0 | 28.9 | 446.1 | 457.9 |
Time (s) | k Amplitude | k Amplitude Error |
---|---|---|
0 | 0.149 | 0.001 |
60 | 0.149 | 0.001 |
120 | 0.149 | 0.001 |
180 | 0.148 | 0.001 |
240 | 0.149 | 0.001 |
270 | 0.169 | 0.001 |
300 | 0.188 | 0.002 |
330 | 0.211 | 0.002 |
360 | 0.246 | 0.0025 |
390 | 0.288 | 0.003 |
420 | 0.317 | 0.003 |
450 | 0.346 | 0.0035 |
480 | 0.386 | 0.004 |
510 | 0.397 | 0.004 |
540 | 0.399 | 0.004 |
570 | 0.400 | 0.004 |
600 | 0.400 | 0.0045 |
X (cm) | k Amplitude (Error ± 0.005) |
---|---|
−3.5 | 0.0002 |
−3 | 0.0025 |
−2.5 | 0.044 |
−2 | 0.004 |
−1.5 | 0.015 |
−1 | 0.025 |
−0.5 | 0.056 |
0 | 0.041 |
0.5 | 0.092 |
1 | 0.105 |
1.5 | 0.075 |
2 | 0.054 |
2.5 | 0.079 |
3 | 0.041 |
3. 5 | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismaeel, N.T.; Lábadi, Z.; Petrik, P.; Fried, M. Investigation of Electrochromic, Combinatorial TiO2-SnO2 Mixed Layers by Spectroscopic Ellipsometry Using Different Optical Models. Materials 2023, 16, 4204. https://doi.org/10.3390/ma16124204
Ismaeel NT, Lábadi Z, Petrik P, Fried M. Investigation of Electrochromic, Combinatorial TiO2-SnO2 Mixed Layers by Spectroscopic Ellipsometry Using Different Optical Models. Materials. 2023; 16(12):4204. https://doi.org/10.3390/ma16124204
Chicago/Turabian StyleIsmaeel, Noor Taha, Zoltán Lábadi, Peter Petrik, and Miklós Fried. 2023. "Investigation of Electrochromic, Combinatorial TiO2-SnO2 Mixed Layers by Spectroscopic Ellipsometry Using Different Optical Models" Materials 16, no. 12: 4204. https://doi.org/10.3390/ma16124204
APA StyleIsmaeel, N. T., Lábadi, Z., Petrik, P., & Fried, M. (2023). Investigation of Electrochromic, Combinatorial TiO2-SnO2 Mixed Layers by Spectroscopic Ellipsometry Using Different Optical Models. Materials, 16(12), 4204. https://doi.org/10.3390/ma16124204