Ferroelectricity and Oxide Reliability of Stacked Hafnium–Zirconium Oxide Devices
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Böscke, T.S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903. [Google Scholar] [CrossRef]
- Fengler, F.P.G.; Pesic, M.; Starschich, S.; Schneller, T.; Bottger, U.; Schenk, T.; Park, M.H.; Mikolajick, T.; Schroeder, U. Comparison of hafnia and PZT based ferroelectrics for future non-volatile FRAM applications. In Proceedings of the European Solid-State Device Research Conference (ESSDERC), Lausanne, Switzerland, 12–15 September 2016. [Google Scholar]
- Mikolajick, T.; Dehm, C.; Hartner, W.; Kasko, I.; Kastner, M.; Nagel, N.; Moert, M.; Mazure, C. FeRAM technology for high density applications. Microelectron. Reliab. 2001, 41, 947–950. [Google Scholar] [CrossRef]
- Celinska, J.; Joshi, V.; Narayan, S.; McMillan, L.; Paz de Araujo, C. Effects of scaling the film thickness on the ferroelectric properties of SrBi2Ta2O9 ultra thin films. Appl. Phys. Lett. 2003, 82, 3937–3939. [Google Scholar] [CrossRef]
- Chiu, Y.C.; Cheng, C.H.; Chang, C.Y.; Lee, M.H.; Hsu, H.H.; Yen, S.S. Low power 1T DRAM/NVM versatile memory featuring steep sub-60-mV/decade operation, fast 20-ns speed, and robust 85 °C-extrapolated 1016 endurance. In Proceedings of the 2015 Symposium on VLSI Technology (VLSI Technology), Kyoto, Japan, 16–18 June 2015; pp. T184–T185. [Google Scholar]
- Chiu, Y.C.; Cheng, C.H.; Chang, C.Y.; Tang, Y.T.; Chen, M.C. One-transistor ferroelectric versatile memory: Strained-gate engineering for realizing energy-efficient switching and fast negative-capacitance operation. In Proceedings of the 2016 Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 14–16 June 2016; pp. T150–T151. [Google Scholar]
- Cheng, C.H.; Chiu, Y.C.; Liou, G.L. Experimental Observation of Negative Capacitance Switching Behavior in One-Transistor Ferroelectric Versatile Memory. Phys. Status Solidi-Rapid Res. Lett. 2017, 11, 1700098. [Google Scholar] [CrossRef]
- Cheng, C.H.; Chin, A. Low-leakage-current DRAM-like memory using a one-transistor ferroelectric MOSFET with a Hf-based gate dielectric. IEEE Electron Device Lett. 2014, 35, 138–140. [Google Scholar] [CrossRef]
- Fan, C.C.; Chiu, Y.C.; Liu, C.; Lai, W.W.; Tu, C.Y.; Lin, M.H.; Chang, T.J.; Chang, C.Y.; Liou, G.L.; Hsu, H.H.; et al. Paraelectric-ferroelectric transition in hafnium-oxide-based ferroelectric memory. In Proceedings of the 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), Kobe, Japan, 13–16 March 2018; pp. 280–282. [Google Scholar]
- Fan, C.C.; Chiu, Y.C.; Liu, C.; Liou, G.L.; Lai, W.W.; Chen, Y.R.; Chang, T.J.; Chen, W.H.; Cheng, C.H.; Chang, C.Y. Program/erase speed and data retention trade-off in negative capacitance versatile memory. In Proceedings of the 2017 Silicon Nanoelectronics Workshop (SNW), Kyoto, Japan, 4–5 June 2017; pp. 101–102. [Google Scholar]
- Liu, W.D.; Huang, Z.Y.; Ma, J.; Zheng, Z.W.; Cheng, C.H. Impact of Series-Connected Ferroelectric Capacitor in HfO2-Based Ferroelectric Field-Effect Transistors for Memory Application. IEEE J. Electron Devices Soc. 2020, 8, 1076–1081. [Google Scholar] [CrossRef]
- Jerry, M.; Chen, P.Y.; Zhang, J.; Sharma, P.; Ni, K.; Yu, S.; Datta, S. Ferroelectric FET analog synapse for acceleration of deep neural network training. In Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 139–142. [Google Scholar]
- Li, Z.; Wang, T.; Yu, J.; Meng, J.; Liu, Y.; Zhu, H.; Sun, Q.; Zhang, W.D.; Chen, L. Ferroelectric Hafnium Oxide Films for In-Memory Computing Applications. Adv. Electron. Mater. 2022, 8, 2200951. [Google Scholar] [CrossRef]
- Müller, J.; Polakowski, P.; Riedel, S.; Mueller, S.; Yurchuk, E.; Mikolajick, T. Ferroelectric Hafnium Oxide A Game Changer to FRAM? In Proceedings of the 14th Annual Non-Volatile Memory Technology Symposium (NVMTS), Jeju, Republic of Korea, 27–29 October 2014; pp. 1–7. [Google Scholar]
- Park, M.H.; Schenk, T.; Fancher, C.M.; Grimley, E.D.; Zhou, C.; Richter, C.; LeBeau, J.M.; Jones, J.L.; Mikolajick, T.; Schroeder, U. A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants. J. Mater. Chem. C 2017, 5, 4677–4690. [Google Scholar] [CrossRef]
- Cheng, C.H.; Fan, C.C.; Tu, C.Y.; Hsu, H.H.; Chang, C.Y. Implementation of dopant-free hafnium oxide negative capacitance field-effect transistor. IEEE Trans. Electron Devices 2018, 66, 825–828. [Google Scholar] [CrossRef]
- Fan, C.C.; Cheng, C.H.; Tu, C.Y.; Liu, C.; Chen, W.H.; Chang, T.J.; Chang, C.Y. Achieving high-scalability negative capacitance FETs with uniform Sub-35 mV/dec switch using dopant-free hafnium oxide and gate strain. In Proceedings of the IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 18–22 June 2018; pp. 139–140. [Google Scholar]
- Chen, H.H.; Liao, R.Y.; Chou, W.C.; Hsu, H.H.; Cheng, C.H.; Huang, C.C. Ferroelectric Polarization Enhancement in Hafnium-Based Oxides through Capping Layer Engineering. IEEE J. Electron Devices Soc. 2022, 10, 947–952. [Google Scholar] [CrossRef]
- Wang, J.; Wang, D.; Li, Q.; Zhang, A.; Gao, D.; Guo, M.; Feng, J.; Fan, Z.; Chen, D.; Qin, M.; et al. Excellent Ferroelectric Properties of Hf0.5Zr0.5O2 Thin Films Induced by Al2O3 Dielectric Layer. IEEE Electron Device Lett. 2019, 40, 1937–1940. [Google Scholar] [CrossRef]
- Wan, J.; Chen, X.; Ji, L.; Tu, Z.; Wu, H.; Liu, C. Ferroelectricity of Hf0.5Zr0.5O2 Thin Films Free From the Influence of Electrodes by Using Al2O3 Capping Layers. IEEE Trans. Electron Devices 2022, 69, 1805–1810. [Google Scholar] [CrossRef]
- Chiu, Y.C.; Cheng, C.H.; Liou, G.L.; Chang, C.Y. Energy-efficient versatile memories with ferroelectric negative capacitance by gate-strain enhancement. IEEE Trans. Electron Devices 2017, 64, 3498–3501. [Google Scholar] [CrossRef]
- Böscke, T.S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors. In Proceedings of the International Electron Devices Meeting (IEDM), Washington, DC, USA, 5–7 December 2011; pp. 547–550. [Google Scholar]
- Lin, J.W.; Liang, Y.K.; Chen, Y.; Li, Z.H.; Chiang, T.C.; Liu, P.T.; Chang, Y.E.; Lin, C.H. Ferroelectric Properties of HZO Ferroelectric Capacitors with Various Capping Electrodes and Annealing Conditions. ECS Trans. 2021, 104, 31–34. [Google Scholar] [CrossRef]
- Fan, C.C.; Cheng, C.H.; Chen, Y.R.; Liu, C.; Chang, C.Y. Energy-efficient HfAlOx NCFET: Using gate strain and defect passivation to realize nearly hysteresis-free sub-25mV/dec switch with ultralow leakage. In Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 561–564. [Google Scholar]
- Lee, C.K.; Cho, E.; Lee, H.S.; Hwang, C.S.; Han, S. First-principles study on doping and phase stability of HfO2. Phys. Rev. B 2008, 78, 012102. [Google Scholar] [CrossRef]
- Cheng, C.H.; Lin, M.H.; Chen, H.Y.; Fan, C.C.; Liu, C.; Hsu, H.H.; Chang, C.Y. Impact of zirconium doping on steep subthreshold switching of negative capacitance hafnium oxide based transistors. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2019, 13, 1800573. [Google Scholar] [CrossRef]
- Wang, S.Q.; Mayer, J.W. Reaction of Zr thin films with SiO2 substrates. J. Appl. Phys. 1988, 64, 4711–4716. [Google Scholar] [CrossRef]
- Lee, T.M.; Lin, C.H.; Fan, Y.C.; Lee, S.; Liu, W.D.; Liu, H.M.; Huang, Z.Y.; Zheng, Z.W.; Wang, S.A.; Cheng, C.H.; et al. A comparative study of metal-ferroelectric-metal devices using doped-and stacked-hafnium zirconium oxides. Thin Solid Film. 2020, 701, 137927. [Google Scholar] [CrossRef]
- Pešić, M.; Fengler, F.P.G.; Larcher, L.; Padovani, A.; Schenk, T.; Grimley, E.D.; Sang, X.; LeBeau, J.M.; Slesazeck, S.; Schroeder, U.; et al. Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors. Adv. Funct. Mater. 2016, 26, 4601–4612. [Google Scholar] [CrossRef]
- Joseph, A.J.; Kumar, B. Study of true-remanent polarization using remanent hysteresis task and resistive leakage analysis in ferroelectric 0.64Pb(Mg1/3Nb2/3)O3-0.36PbTiO3 ceramics. Solid State Commun. 2018, 271, 11–15. [Google Scholar] [CrossRef]
- Müller, J.; Böscke, T.S.; Schröder, U.; Mueller, S.; Bräuhaus, D.; Böttger, U.; Frey, L.; Mikolajick, T. Ferroelectricity in Simple Binary ZrO2 and HfO2. Nano Lett. 2012, 12, 4318–4323. [Google Scholar] [CrossRef]
- Park, M.H.; Kim, H.J.; Kim, Y.J.; Moon, T.; Kim, K.D.; Lee, Y.H.; Hyun, S.D.; Hwang, C.S. Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric Hf0.5Zr0.5O2 thin films. J. Mater. Chem. C 2015, 3, 6291–6300. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, R.-Y.; Chen, H.-H.; Lin, P.-Y.; Liang, T.-A.; Su, K.-H.; Lin, I.-C.; Wen, C.-H.; Chou, W.-C.; Hsu, H.-H.; Cheng, C.-H. Ferroelectricity and Oxide Reliability of Stacked Hafnium–Zirconium Oxide Devices. Materials 2023, 16, 3306. https://doi.org/10.3390/ma16093306
Liao R-Y, Chen H-H, Lin P-Y, Liang T-A, Su K-H, Lin I-C, Wen C-H, Chou W-C, Hsu H-H, Cheng C-H. Ferroelectricity and Oxide Reliability of Stacked Hafnium–Zirconium Oxide Devices. Materials. 2023; 16(9):3306. https://doi.org/10.3390/ma16093306
Chicago/Turabian StyleLiao, Ruo-Yin, Hsuan-Han Chen, Ping-Yu Lin, Ting-An Liang, Kuan-Hung Su, I-Cheng Lin, Chen-Hao Wen, Wu-Ching Chou, Hsiao-Hsuan Hsu, and Chun-Hu Cheng. 2023. "Ferroelectricity and Oxide Reliability of Stacked Hafnium–Zirconium Oxide Devices" Materials 16, no. 9: 3306. https://doi.org/10.3390/ma16093306
APA StyleLiao, R. -Y., Chen, H. -H., Lin, P. -Y., Liang, T. -A., Su, K. -H., Lin, I. -C., Wen, C. -H., Chou, W. -C., Hsu, H. -H., & Cheng, C. -H. (2023). Ferroelectricity and Oxide Reliability of Stacked Hafnium–Zirconium Oxide Devices. Materials, 16(9), 3306. https://doi.org/10.3390/ma16093306