Overview and Recent Advances in Hyphenated Electrochemical Techniques for the Characterization of Electroactive Materials
Abstract
:1. Introduction
- The electrochemical quartz crystal microbalance (EQCM) devices in the dc-regime (electrogravimetry) and in the ac-regime (ac-electrogravimetry or mass impedance). The EQCM electrode consists of a thin metal layer deposited on a thin sheet of quartz crystal whose resonant frequency is correlated with the mass on the metal electrode layer by Sauerbrey’s equation [1,2,3,4]. This technique has been used to characterize the ionic or solvent insertion in electroactive films [5,6,7,8,9], corrosion processes [10,11,12,13,14], or the growth of passive layers [15,16,17], among others;
- Spectroscopy (UV-Vis, near IR, Raman). Working in transparent electrochemical cells allows recording the spectra at different wavelengths during an electrochemical experiment. This is known as spectroelectrochemistry and has been widely used to identify changes in the structure of electroactive materials during electrochemical experiments [18,19,20,21,22,23]. Coupling spectroscopy with electrochemical impedance spectroscopy is also possible; this is the color impedance technique [24,25,26,27,28];
- Digital Video Electrochemistry (DVEC). This technique consists of coupling an electrochemical experiment with the recorded video of the electrode’s surface, allowing the spatiotemporal analysis of the color changes at any part of the electrode’s surface. If compared with spectroelectrochemistry, it has a small resolution but allows an estimation of the homogeneity of the electrode’s surface through the analysis of the color dispersion [29];
2. Electrochemical Techniques
Recording Data and Previous Data Treatment
3. Spectroelectrochemistry
3.1. Spectroelectrochemistry in the dc-Regime
3.2. Spectroelectrochemistry in ac-Regime
4. Electrogravimetry
4.1. Conducting Polymers. The Insertion Problem
4.2. Corrosion and Formation of Passive Layers
4.3. Electroplating and Electrodeposition
4.4. Electrogravimetry in the ac-Regime
4.5. Electromechanical Properties at the Electrode Interface
5. Digital Video Electrochemistry (DVEC)
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Physik 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Etchenique, R.A.; Calvo, E.J. Gravimetric Measurement in Redox Polymer Electrodes with the EQCM beyond the Sauerbrey Limit. Electrochem. Commun. 1999, 1, 167–170. [Google Scholar] [CrossRef]
- Kankare, J. Sauerbrey Equation of Quartz Crystal Microbalance in Liquid Medium. Langmuir 2002, 18, 7092–7094. [Google Scholar] [CrossRef]
- Vogt, B.D.; Lin, E.K.; Wu, W.-I.; White, C.C. Effect of Film Thickness on the Validity of the Sauerbrey Equation for Hydrated Polyelectrolyte Films. J. Phys. Chem. B 2004, 108, 12685–12690. [Google Scholar] [CrossRef]
- Feldman, B.J.; Melroy, O.R. Ion Flux during Electochemical Charging of Prussian Blue Films. J. Electroanal. Chem. 1987, 234, 213–227. [Google Scholar] [CrossRef]
- Hillman, A.R.; Loveday, D.C.; Bruckenstein, S. A General Approach to the Interpretation of Electrochemical Quartz Crystal Microbalance Data: Part II. Chronoamperometry: Temporal Resolution of Mobile Species Transport in Polyvinylferrocene Films. J. Electroanal. Chem. Interfacial Electrochem. 1991, 300, 67–83. [Google Scholar] [CrossRef]
- Dini, D.; Salatelli, E.; Decker, F. EQCM Analysis of the Insertion Phenomena in a N-Doped Poly-Alkyl-Terthiophene with Regioregular Pattern of Substitution. Front. Chem. 2021, 9, 711426. [Google Scholar] [CrossRef]
- Hillman, A.R.; Daisley, S.J.; Bruckenstein, S. Ion and Solvent Transfers and Trapping Phenomena during N-Doping of PEDOT Films. Electrochim. Acta 2008, 53, 3763–3771. [Google Scholar] [CrossRef]
- Ismail, H.K.; Alesary, H.F.; Al-Murshedi, A.Y.M.; Kareem, J.H. Ion and Solvent Transfer of Polyaniline Films Electrodeposited from Deep Eutectic Solvents via EQCM. J. Solid State Electrochem. 2019, 23, 3107–3121. [Google Scholar] [CrossRef]
- Tang, M.; Harmon, S.; Nadagouda, M.N.; Lytle, D.A. Quartz Crystal Microbalance with Dissipation: A New Approach of Examining Corrosion of New Copper Surfaces in Drinking Water. Environ. Sci. Technol. 2021, 55, 11265–11273. [Google Scholar] [CrossRef]
- Gimenez-Romero, D.; Garcia-Jareno, J.J.; Vicente, F. EQCM and EIS Studies of Zn-Aq(2+)+2e(-) Reversible Arrow Zn0 Electrochemical Aq Reaction in Moderated Acid Medium. J. Electroanal. Chem. 2003, 558, 25–33. [Google Scholar] [CrossRef]
- Kim, G.-Y.; Kim, S.-W.; Jang, J.; Yoon, S.; Kim, J.-S. Investigation of Early Corrosion Behavior of Canister Candidate Materials in Oxic Groundwater by the EQCM Method. Sci. Technol. Nucl. Install. 2022, 2022, 4582625. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhou, B.; Li, C.; Gao, F.; Wang, X.; Liang, D.; Wei, Y. In-Situ Observation of the Growth Behavior of ZnAl Layered Double Hydroxide Film Using EQCM. Mater. Des. 2019, 180, 107952. [Google Scholar] [CrossRef]
- Guo, N.; Lei, Y.; Liu, T.; Chang, X.; Yin, Y. Electrochemical Deposition of Polypyrrole Coating on Copper from Aqueous Phytate Solution and Its Application in Corrosion Protection. J. Chin. Soc. Corros. Prot. 2018, 38, 140–146. [Google Scholar] [CrossRef]
- Gregori, J.; García-Jareño, J.J.; Giménez-Romero, D.; Vicente, F. Growth of Passive Layers on Nickel during Their Voltammetric Anodic Dissolution in a Weakly Acid Medium. Electrochim. Acta 2006, 52, 658–664. [Google Scholar] [CrossRef]
- Woodhouse, R.C.; Wilbraham, R.J.; Boxall, C. Fixed Contamination on Steel Surfaces: First Use of Quartz Crystal Microgravimetry to Measure Oxide Growth on Process Steels under Conditions Typical of Nuclear Reprocessing. MRS Online Proc. Libr. 2012, 1383, 95–100. [Google Scholar] [CrossRef]
- Vidal, C.V.; Muñoz, A.I.; Olsson, C.-O.A.; Mischler, S. Passivation of a CoCrMo PVD Alloy with Biomedical Composition under Simulated Physiological Conditions Studied by EQCM and XPS. J. Electrochem. Soc. 2012, 159, C233–C243. [Google Scholar] [CrossRef]
- Amemiya, T.; Hashimoto, K.; Fujishima, A.; Itoh, K. Analyses of Spectroelectrochemical Behavior of Polypyrrole Films Using the Nernst Equation “Monomer Unit Model” and Polaron/Bipolaron Model. J. Electrochem. Soc. 1991, 138, 2845–2850. [Google Scholar] [CrossRef]
- Amemiya, T.; Hashimoto, K.; Fujishima, A. Frequency-Resolved Faradaic Processes in Polypirrole Films Observed by Electromodulation Techniques—Electrochemical Iimpedance and Color Impedance Spectroscopies. J. Phys. Chem. 1993, 97, 4187–4191. [Google Scholar] [CrossRef]
- Arjomandi, J.; Kakaei, Z. Electrosynthesis and In Situ Spectroelectrochemistry of Conducting O-Aminophenol-p-Aminophenol Copolymers in Aqueous Solution. J. Electrochem. Soc. 2014, 161, E53–E60. [Google Scholar] [CrossRef]
- Mortimer, R.J. Spectroelectrochemistry, Methods and Instrumentation. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Lindon, J.C., Tranter, G.E., Koppenaal, D.W., Eds.; Academic Press: Oxford, UK, 2017; pp. 172–177. ISBN 978-0-12-803224-4. [Google Scholar]
- Mortimer, R.J.; Reynolds, J.R. In Situ Colorimetric and Composite Coloration Efficiency Measurements for Electrochromic Prussian Blue. J. Mater. Chem. 2005, 15, 2226–2233. [Google Scholar] [CrossRef] [Green Version]
- Mortimer, R.J.; Rosseinsky, D.R. Iron Hexacyanoferrate Films: Spectroelectrochemical Distinction and Electrodeposition Sequence of “soluble” (K+-Containing) and “Insoluble” (K+-Free) Prussian Blue, and Composition Changes in Polyelectrochromic Switching. J. Chem. Soc. Dalton Trans. 1984, 2059–2062. [Google Scholar] [CrossRef]
- Amemiya, T.; Hashimoto, K.; Fujishima, A. Color Impedance Spectroscopy of Polypyrrole Films. J. Electroanal. Chem. 1994, 377, 143–148. [Google Scholar] [CrossRef]
- Kim, J.J.; Tryk, D.A.; Amemiya, T.; Hashimoto, K.; Fujishima, A. Color Impedance and Electrochemical Impedance Studies of WO3 Thin Films: Behavior of Thinner Films in Non-Aqueous Electrolyte. J. Electroanal. Chem. 1997, 433, 9–17. [Google Scholar] [CrossRef]
- Rojas-González, E.A.; Niklasson, G.A. Setup for Simultaneous Electrochemical and Color Impedance Measurements of Electrochromic Films: Theory, Assessment, and Test Measurement. Rev. Sci. Instrum. 2019, 90, 085103. [Google Scholar] [CrossRef]
- Gabrielli, C.; Keddam, M.; Perrot, H.; Torresi, R. Lithium Insertion in WO3 Studied by Simultaneous Measurements of Impedance, Electrogravimetric and Electro-Optical Transfer Functions. J. Electroanal. Chem. 1994, 378, 85–92. [Google Scholar] [CrossRef]
- Garcia-Belmonte, G.; Bueno, P.R.; Fabregat-Santiago, F.; Bisquert, J. Relaxation Processes in the Coloration of Amorphous WO3 Thin Films Studied by Combined Impedance and Electro-Optical Measurements. J. Appl. Phys. 2004, 96, 853–859. [Google Scholar] [CrossRef]
- Guillén, E.; Ferrer-Roselló, M.; Agrisuelas, J.; García-Jareño, J.J.; Vicente, F. Digital Video-Electrochemistry (DVEC) to Assess Electrochromic Materials in the Frequency Domain: RGB Colorimetry Impedance Spectroscopy. Electrochim. Acta 2021, 366, 137340. [Google Scholar] [CrossRef]
- Decker, F.; Neuenschwander, R.T.; Cesar, C.L.; Penna, A.F.S. The Mirage Effect in Electrochemistry. J. Electroanal. Chem. Interfacial Electrochem. 1987, 228, 481–486. [Google Scholar] [CrossRef]
- Rosolen, J.M.; Decker, F.; Fracastoro-Decker, M.; Gorenstein, A.; Torresi, R.M.; de Torresi, S.I.C. A Mirage Effect Analysis of the Electrochemical Processes in Nickel Hydroxide Electrodes. J. Electroanal. Chem. 1993, 354, 273–279. [Google Scholar] [CrossRef]
- de Abreu Alves, M.R.; Reis, R.N.C.; de Oliveira, J.G.; Calado, H.D.R.; Donnici, C.L.; Matencio, T. Simultaneous Quartz Microbalance and Mirage Effect Studies of Poly(3-Methoxythiophene) Electrosynthesis and Electrochemical Characterisations. Electrochim. Acta 2013, 105, 347–352. [Google Scholar] [CrossRef]
- Ispas, A.; Peipmann, R.; Bund, A.; Efimov, I. On the P-Doping of PEDOT Layers in Various Ionic Liquids Studied by EQCM and Acoustic Impedance. Electrochim. Acta 2009, 54, 4668–4675. [Google Scholar] [CrossRef]
- Agrisuelas, J.; Gabrielli, C.; García-Jareño, J.J.; Perrot, H.; Sel, O.; Vicente, F. Viscoelastic Potential-Induced Changes in Acoustically Thin Films Explored by Quartz Crystal Microbalance with Motional Resistance Monitoring. Electrochim. Acta 2015, 176, 1454–1463. [Google Scholar] [CrossRef]
- Kulesza, P.; Zamponi, S.; Malik, M.; Miecznikowski, K.; Berrettoni, M.; Marassi, R. Spectroelectrochemical Identity of Prussian Blue Films in Various Electrolytes: Comparison of Time-Derivative Voltabsorptometric Responses with Conventional Cyclic Voltammetry. J. Solid State Electrochem. 1997, 1, 88–93. [Google Scholar] [CrossRef]
- Nekrasov, A.A.; Ivanov, V.F.; Gribkova, O.L.; Vannikov, A.V. Voltabsorptometric Study of “Structural Memory” Effects in Polyaniline. Electrochim. Acta 2005, 50, 1605–1613. [Google Scholar] [CrossRef]
- Duluard, S.; Ouvrard, B.; Celik-Cochet, A.; Campet, G.; Posset, U.; Schottner, G.; Delville, M.-H. Comparison of PEDOT Films Obtained via Three Different Routes through Spectroelectrochemistry and the Differential Cyclic Voltabsorptometry Method (DCVA). J. Phys. Chem. B 2010, 114, 7445–7451. [Google Scholar] [CrossRef]
- Qafsaoui, W.; Taouil, A.E.; Kendig, M.W.; Cachet, H.; Joiret, S.; Perrot, H.; Takenouti, H. Coupling of Electrochemical, Electrogravimetric and Surface Analysis Techniques to Study Dithiocarbamate/Bronze Interactions in Chloride Media. Corros. Sci. 2018, 130, 190–202. [Google Scholar] [CrossRef] [Green Version]
- Gimenez-Romero, D.; Gabrielli, C.; Garcia-Jareno, J.J.; Perrot, H.; Vicente, F. Electrochemical Quartz Crystal Microbalance Study of Copper Electrochemical Reaction in Acid Medium Containing Chlorides. J. Electrochem. Soc. 2006, 153, J32–J39. [Google Scholar] [CrossRef] [Green Version]
- He, J.-B.; Zhou, Y.; Meng, F.-S. Time-Derivative Cyclic Voltabsorptometry for Voltammetric Characterization of Catechin Film on a Carbon-Paste Electrode: One Voltammogram Becomes Four. J. Solid State Electrochem. 2009, 13, 679–685. [Google Scholar] [CrossRef]
- He, J.B.; Yu, C.-L.; Duan, T.-L.; Deng, N. In Situ Spectroelectrochemical Analysis of Quercetin in Acidic Medium. Anal. Sci. 2009, 25, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Agrisuelas, J.; Giménez-Romero, D.; García-Jareño, J.J.; Vicente, F. Vis/NIR Spectroelectrochemical Analysis of Poly-(Azure A) on ITO Electrode. Electrochem. Commun. 2006, 8, 549–553. [Google Scholar] [CrossRef]
- Agrisuelas, J.; García-Jareño, J.J.; Gimenez-Romero, D.; Vicente, F. Innovative Combination of Three Alternating Current Relaxation Techniques: Electrical Charge, Mass, and Color Impedance Spectroscopy. Part II: Prussian Blue ⇆ Everitt’s Salt Process. J. Phys. Chem. C 2009, 113, 8438–8446. [Google Scholar] [CrossRef]
- Gabrielli, C.; Keddam, M.; Nadi, N.; Perrot, H.A.c. Electrogravimetry on Conducting Polymers. Application to Polyaniline. Electrochim. Acta 1999, 44, 2095–2103. [Google Scholar] [CrossRef]
- Gabrielli, C.; Perrot, H.; Rose, D.; Rubin, A.; Toque, J.; Pham, M.; Piro, B. New Frequency/Voltage Converters for Ac-Electrogravimetric Measurements Based on Fast Quartz Crystal Microbalance. Rev. Sci. Instrum. 2007, 78, 074103. [Google Scholar] [CrossRef]
- Gabrielli, C.; Perrot, H. AC-Electrogravimetry Investigation in Electroactive Thin Films. In Modern Aspects of Electrochemistry No. 44: Modelling and Numerical Simulations II; Schlesinger, M., Ed.; Modern Aspects of Electrochemistry; Springer: New York, NY, USA, 2009; pp. 151–238. ISBN 978-0-387-49586-6. [Google Scholar]
- O’Leary, P.; Harker, M.; Neumayr, R. Savitzky-Golay Smoothing for Multivariate Cyclic Measurement Data. In Proceedings of the 2010 IEEE International Instrumentation and Measurement Technology Conference I2mtc 2010, Proceedings, Austin, TX, USA, 3–6 May 2010; IEEE: New York, NY, USA, 2010. [Google Scholar]
- Kalka, A.J.J.; Turek, A.M.M. Searching for Alternatives to the Savitzky-Golay Filter in the Spectral Processing Domain. Appl. Spectrosc. 2023, 77, 426–432. [Google Scholar] [CrossRef]
- Betty, K.R.; Horlick, G. Frequency Response Plots for Savitzky—Golay Filter Functions. Anal. Chem. 1977, 49, 351–352. [Google Scholar] [CrossRef]
- Ibañez, D.; Fernandez-Blanco, C.; Heras, A.; Colina, A. Time-Resolved Study of the Surface-Enhanced Raman Scattering Effect of Silver Nanoparticles Generated in Voltammetry Experiments. J. Phys. Chem. C 2014, 118, 23426–23433. [Google Scholar] [CrossRef] [Green Version]
- Ibañez, D.; Garoz-Ruiz, J.; Heras, A.; Colina, A. Simultaneous UV–Visible Absorption and Raman Spectroelectrochemistry. Anal. Chem. 2016, 88, 8210–8217. [Google Scholar] [CrossRef] [Green Version]
- Joiret, S.; Keddam, M.; Nóvoa, X.R.; Pérez, M.C.; Rangel, C.; Takenouti, H. Use of EIS, Ring-Disk Electrode, EQCM and Raman Spectroscopy to Study the Film of Oxides Formed on Iron in 1 M NaOH. Cem. Concr. Compos. 2002, 24, 7–15. [Google Scholar] [CrossRef]
- Bernard, M.C.; Hugot-Le Goff, A. Quantitative Characterization of Polyaniline Films Using Raman Spectroscopy: I: Polaron Lattice and Bipolaron. Electrochim. Acta 2006, 52, 595–603. [Google Scholar] [CrossRef]
- Dunphy, D.R.; Mendes, S.B.; Saavedra, S.S.; Armstrong, N.R. The Electroactive Integrated Optical Waveguide: Ultrasensitive Spectroelectrochemistry of Submonolayer Adsorbates. Anal. Chem. 1997, 69, 3086–3094. [Google Scholar] [CrossRef]
- Guillén, E.; Agrisuelas, J.; García-Jareño, J.J.; Vicente, F. The Role of Lithium, Perchlorate and Water during Electrochemical Processes in Poly(3,4-Ethylenedioxythiophene) Films in LiClO4 Aqueous Solutions. J. Electroanal. Chem. 2021, 897, 115580. [Google Scholar] [CrossRef]
- Varvara, S.; Dorneanu, S.-A.; Okos, A.; Muresan, L.M.; Bostan, R.; Popa, M.; Marconi, D.; Ilea, P. Dissolution of Metals in Different Bromide-Based Systems: Electrochemical Measurements and Spectroscopic Investigations. Materials 2020, 13, 3630. [Google Scholar] [CrossRef]
- Agrisuelas, J.; García-Jareño, J.J.; Vicente, F. Identification of Processes Associated with Different Iron Sites in the Prussian Blue Structure by in Situ Electrochemical, Gravimetric, and Spectroscopic Techniques in the Dc and Ac Regimes. J. Phys. Chem. C 2012, 116, 1935–1947. [Google Scholar] [CrossRef]
- González-Peña, O.I.; Chapman, T.W.; Vong, Y.M.; Antaño-López, R. Study of Adsorption of Citrate on Pt by CV and EQCM. Electrochim. Acta 2008, 53, 5549–5554. [Google Scholar] [CrossRef]
- Gabrielli, C.; Keddam, M.; Torresi, R. Calibration of the Electrochemical Quartz Crystal Microbalance. J. Electrochem. Soc. 1991, 138, 2657. [Google Scholar] [CrossRef]
- EQCM-Simple-Experiment_Ver1_1—EQCM-Calibration-of-an-Au-Coated-Quartz-Crystal-AppNote.Pdf. Available online: https://www.gamry.com/assets/Uploads/eQCM-Calibration-of-an-Au-coated-Quartz-Crystal-AppNote.pdf (accessed on 18 December 2016).
- Chao, C.Y.; Lin, L.F.; Macdonald, D.D. A Point Defect Model for Anodic Passive Films: I. Film Growth Kinetics. J. Electrochem. Soc. 1981, 128, 1187. [Google Scholar] [CrossRef]
- Macdonald, D.D. Some Personal Adventures in Passivity—A Review of the Point Defect Model for Film Growth. Russ. J. Electrochem. 2012, 48, 235–258. [Google Scholar] [CrossRef]
- To Thi Kim, L.; Sel, O.; Debiemme-Chouvy, C.; Gabrielli, C.; Laberty-Robert, C.; Perrot, H.; Sanchez, C. Proton Transport Properties in Hybrid Membranes Investigated by Ac-Electrogravimetry. Electrochem. Commun. 2010, 12, 1136–1139. [Google Scholar] [CrossRef]
- To Thi Kim, L.; Debiemme-Chouvy, C.; Gabrielli, C.; Perrot, H. Redox Switching of Heteropolyanions Entrapped in Polypyrrole Films Investigated by Ac Electrogravimetry. Langmuir 2012, 28, 13746–13757. [Google Scholar] [CrossRef]
- Hillman, A.R.; Swann, M.J.; Bruckenstein, S. General-Approach to the Interpretation of Electrochemical Quartz Crystal Microbalance Data 1. Cyclic Voltammetry—Kinetic Subtleties in the Electrochemical Doping of Polybithiophene Films. J. Phys. Chem. 1991, 95, 3271–3277. [Google Scholar] [CrossRef]
- Hillman, A.R.; Hughes, N.A.; Bruckenstein, S. Dynamic Separation of Mobile Species Transfer Processes at Polymer Modified Electrodes Using the Electrochemical Quartz Crystal Microbalance. Analyst 1994, 119, 167. [Google Scholar] [CrossRef]
- Vieil, E.; Lopez, C. Quantitative Discrimination of Mass Fluxes at Electrochemical Interfaces by Optical Beam Deflection. J. Electroanal. Chem. 1999, 466, 218–233. [Google Scholar] [CrossRef]
- Henderson, M.J.; Robert Hillman, A.; Vieil, E. A Combined Electrochemical Quartz Crystal Microbalance (EQCM) and Probe Beam Deflection (PBD) Study of a Poly(o-Toluidine) Modified Electrode in Perchloric Acid Solution. J. Electroanal. Chem. 1998, 454, 1–8. [Google Scholar] [CrossRef]
- Zaera, F. Use of Molecular Beams for Kinetic Measurements of Chemical Reactions on Solid Surfaces. Surf. Sci. Rep. 2017, 72, 59–104. [Google Scholar] [CrossRef] [Green Version]
- Oyama, N.; Ohsaka, T. Coupling between Electron and Mass Transfer Kinetics in Electroactive Polymer Films—An Application of the in Situ Quartz Crystal Electrode. Prog. Polym. Sci. 1995, 20, 761–818. [Google Scholar] [CrossRef]
- Buttry, D.; Ward, M. Measurement of Interfacial Processes at Electrode Surfaces with the Electrochemical Quartz Crystal Microbalance. Chem. Rev. 1992, 92, 1355–1379. [Google Scholar] [CrossRef]
- Cuenca, A.; Agrisuelas, J.; Catalán, R.; García-Jareño, J.J.; Vicente, F. Motional Resistance Evaluation of the Quartz Crystal Microbalance to Study the Formation of a Passive Layer in the Interfacial Region of a Copper Vertical Bar Diluted Sulfuric Solution. Langmuir 2015, 31, 9655–9664. [Google Scholar] [CrossRef]
- Hillman, A.R. Mobile Species Populations and Viscoelastic Effects in Electroactive Polymer Films. Solid State Ion. 1997, 94, 151–160. [Google Scholar] [CrossRef]
- Gimenez-Romero, D.; Agrisuelas, J.; Garcia-Jareño, J.J.; Gregori, J.; Gabrielli, C.; Perrot, H.; Vicente, F. Electromechanical Phase Transition in Hexacyanometallate Nanostructure (Prussian Blue). J. Am. Chem. Soc. 2007, 129, 7121–7126. [Google Scholar] [CrossRef]
- Cooper, M.A.; Singleton, V.T. A Survey of the 2001 to 2005 Quartz Crystal Microbalance Biosensor Literature: Applications of Acoustic Physics to the Analysis of Biomolecular Interactions. J. Mol. Recognit. 2007, 20, 154–184. [Google Scholar] [CrossRef]
- Etchenique, R.; Brudny, V.L. Characterization of Porous Polyaniline-Polystyrenesulfonate Composite Films Using EQCM. Electrochem. Commun. 1999, 1, 441–444. [Google Scholar] [CrossRef]
- Gabrielli, C.; Magalhaes, A.A.O.; Margarit, I.C.P.; Perrot, H.; Tribollet, B. Study of Chromate-Zinc Conversion Process through Microbalance/Electroacoustic Impedance Coupling Measurements. Electrochem. Commun. 2004, 6, 492–498. [Google Scholar] [CrossRef]
- Xie, F.; Huang, Z.; Chen, C.; Xie, Q.; Huang, Y.; Qin, C.; Liu, Y.; Su, Z.; Yao, S. Preparation of Au-Film Electrodes in Glucose-Containing Au-Electroplating Aqueous Bath for High-Performance Nonenzymatic Glucose Sensor and Glucose/O-2 Fuel Cell. Electrochem. Commun. 2012, 18, 108–111. [Google Scholar] [CrossRef]
- Martin, S.; Granstaff, V.; Frye, G. Characterization of a Quartz Crystal Microbalance with Simultaneous Mass and Liquid Loading. Anal. Chem. 1991, 63, 2272–2281. [Google Scholar] [CrossRef]
- Rodahl, M.; Hook, F.; Kasemo, B. QCM Operation in Liquids: An Explanation of Measured Variations in Frequency and Q Factor with Liquid Conductivity. Anal. Chem. 1996, 68, 2219–2227. [Google Scholar] [CrossRef]
- Lee, S.W.; Hinsberg, W.D. Determination of the Viscoelastic Properties of Polymer Films Using a Compensated Phase-Locked Oscillator Circuit. Anal. Chem. 2002, 74, 125–131. [Google Scholar] [CrossRef]
- Bund, A.; Schneider, M. Characterization of the Viscoelasticity and the Surface Roughness of Electrochemically Prepared Conducting Polymer Films by Impedance Measurements at Quartz Crystals. J. Electrochem. Soc. 2002, 149, E331–E339. [Google Scholar] [CrossRef]
- Arnau, A.; Jimenez, Y.; Fernández, R.; Torres, R.; Otero, M.; Calvo, E.J. Viscoelastic Characterization of Electrochemically Prepared Conducting Polymer Films by Impedance Analysis at Quartz Crystal Study of the Surface Roughness Effect on the Effective Values of the Viscoelastic Properties of the Coating. J. Electrochem. Soc. 2006, 153, C455–C466. [Google Scholar] [CrossRef]
- Lucklum, R.; Hauptmann, P. The Delta F-Delta R QCM Technique: An Approach to an Advanced Sensor Signal Interpretation. Electrochim. Acta 2000, 45, 3907–3916. [Google Scholar] [CrossRef]
- Sousa, C.; Compere, C.; Dreanno, C.; Crassous, M.-P.; Gas, F.; Baus, B.; Perrot, H. Direct and Fast Detection of Alexandrium Minutum Algae by Using High Frequency Microbalance. J. Microbiol. Methods 2014, 104, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.M.; Chang, S.M.; Muramatsu, H. In Situ Optoelectrochemical Approach for the Dynamic Property Study of Polypyrrole Thin Film by Quartz Crystal Combined with UV-Visible Advanced Design. J. Electrochem. Soc. 1999, 146, 4544–4550. [Google Scholar] [CrossRef]
- Kim, J.M.; Chang, S.M.; Muramatsu, H. Monitoring Changes in the Viscoelastic Properties of Thin Polymer Films by the Quartz Crystal Resonator. Polymer 1999, 40, 3291–3299. [Google Scholar] [CrossRef]
- Muramatsu, H.; Egawa, A.; Ataka, T. Reliability of Correlation Between Mass Change and Resonant-Frequency Change for a Viscoelastic-Film-Coated Quartz-Crystal. J. Electroanal. Chem. 1995, 388, 89–92. [Google Scholar] [CrossRef]
- Agrisuelas, J.; García-Jareño, J.J.; Guillén, E.; Vicente, F. Kinetics of Surface Chemical Reactions from a Digital Video. J. Phys. Chem. C 2020, 124, 2050–2059. [Google Scholar] [CrossRef]
- Agrisuelas, J.; García-Jareño, J.J.; Vicente, F. Quantification of Electrochromic Kinetics by Analysis of RGB Digital Video Images. Electrochem. Commun. 2018, 93, 86–90. [Google Scholar] [CrossRef]
- Vidal, M.; Amigo, J.M.; Bro, R.; Ostra, M.; Ubide, C.; Zuriarrain, J. Flatbed Scanners as a Source of Imaging. Brightness Assessment and Additives Determination in a Nickel Electroplating Bath. Anal. Chim. Acta 2011, 694, 38–45. [Google Scholar] [CrossRef]
- Agrisuelas, J.; García-Jareño, J.J.; Guillén, E.; Vicente, F. RGB Video Electrochemistry of Copper Electrodeposition/Electrodissolution in Acid Media on a Ternary Graphite:Copper:Polypropylene Composite Electrode. Electrochim. Acta 2019, 305, 72–80. [Google Scholar] [CrossRef]
- Izquierdo, D.; Ferraresi-Curotto, V.; Heras, A.; Pis-Diez, R.; Gonzalez-Baro, A.C.; Colina, A. Bidimensional Spectroelectrochemistry: Application of a New Device in the Study of a o-Vanillin-Copper(II) Complex. Electrochim. Acta 2017, 245, 79–87. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Jareño, J.J.; Agrisuelas, J.; Vicente, F. Overview and Recent Advances in Hyphenated Electrochemical Techniques for the Characterization of Electroactive Materials. Materials 2023, 16, 4226. https://doi.org/10.3390/ma16124226
García-Jareño JJ, Agrisuelas J, Vicente F. Overview and Recent Advances in Hyphenated Electrochemical Techniques for the Characterization of Electroactive Materials. Materials. 2023; 16(12):4226. https://doi.org/10.3390/ma16124226
Chicago/Turabian StyleGarcía-Jareño, José Juan, Jerónimo Agrisuelas, and Francisco Vicente. 2023. "Overview and Recent Advances in Hyphenated Electrochemical Techniques for the Characterization of Electroactive Materials" Materials 16, no. 12: 4226. https://doi.org/10.3390/ma16124226
APA StyleGarcía-Jareño, J. J., Agrisuelas, J., & Vicente, F. (2023). Overview and Recent Advances in Hyphenated Electrochemical Techniques for the Characterization of Electroactive Materials. Materials, 16(12), 4226. https://doi.org/10.3390/ma16124226