The Influence of Hydrofluoric Acid Temperature and Application Technique on Ceramic Surface Texture and Shear Bond Strength of an Adhesive Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation and Surface Conditioning
- Group 1: NT (control group)—no surface treatment;
- Group 2: DH—dynamic application of preheated HF gel for 60 s of continuous movements of the micro brush on the ceramic surface;
- Group 3: SH—static application of preheated HF gel for 60 s without brushing;
- Group 4: DNH—dynamic application of nonheated HF gel (at room temperature) for 60 s of active movements with a micro brush on the surface;
- Group 5: SNH—static application with a micro brush of nonheated HF gel (at room temperature) for 60 s without brushing.
2.2. Scanning Electron Microscopy (SEM) of Surface Morphology
2.3. Shear Bond Tests
2.4. Statistical Analysis
2.5. Digital Microscopy of Fracture Surfaces
3. Results
3.1. SEM Observations
3.2. SBS Test Results
3.3. Statistical Analysis
3.4. Digital Microscopy Examination
4. Discussion
5. Conclusions
- Both factors (HF temperature and its application technique) significantly affect SBS values; moreover, the temperature is a more influencing parameter. Compared to the control group, the other four types of ceramic treatments improved the shear bond strength values.
- The hydrofluoric acid temperature and application technique determine the different ceramic surface patterns.
- The examination of interfaces after debonding revealed three different types of bonding failures: adhesive, cohesive, and mixed; the cohesive type of failure occurred exclusively in the ceramic material, and there was no cohesive fracture in the adhesive cement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blatz, M.B.; Conejo, J. The Current State of Chairside Digital Dentistry and Materials. Dent. Clin. N. Am. 2019, 63, 175–197. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Dionysopoulos, D.; Tolidis, K.; Kouros, P.; Koliniotou-Koumpia, E.; Tsitrou, E. Structural Integrity Evaluation of Large MOD Restorations Fabricated with a Bulk-Fill and a CAD/CAM Resin Composite Material. Oper. Dent. 2019, 44, 312–321. [Google Scholar] [CrossRef]
- Kömürcüoğlu, M.B.; Sağırkaya, E.; Tulga, A. Influence of different surface treatments on bond strength of novel CAD/CAM restorative materials to resin cement. J. Adv. Prosthodont. 2017, 9, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, T.; Hotta, Y.; Kunii, J.; Kuriyama, S.; Tamaki, Y. A review of dental CAD/CAM: Current status and future perspectives from 20 years of experience. Dent. Mater. J. 2009, 28, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Gracis, S.; Thompson, V.; Ferencz, J.; Silva, N.; Bonfante, E. A New Classification System for All-Ceramic and Ceramic-like Restorative Materials. Int. J. Prosthodont. 2016, 28, 227–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Kelly, J.R. Dental Ceramics for Restoration and Metal Veneering. Dent. Clin. N. Am. 2017, 61, 797–819. [Google Scholar] [CrossRef] [PubMed]
- Barjaktarova-Valjakova, E.; Grozdanov, A.; Guguvcevski, L.; Korunoska-Stevkovska, V.; Kapusevska, B.; Gigovski, N.; Mijoska, A.; Bajraktarova-Misevska, C. Acid Etching as Surface Treatment Method for Luting of Glass-Ceramic Restorations, Part 1: Acids, Application Protocol and Etching Effectiveness. Open Access Maced. J. Med. Sci. 2018, 6, 568–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grégoire, G.; Poulet, P.-P.; Sharrock, P.; Destruhaut, F.; Tavernier, B. Hydrofluoric acid etching versus self-etching glass ceramic primer: Consequences on the interface with resin cements. Oral Health Care 2019, 4, 1–7. [Google Scholar] [CrossRef]
- Bindl, A.; Richter, B.; Mörmann, W.H. Survival of ceramic computer-aided design/manufacturing crowns bonded to preparations with reduced macroretention geometry. Int. J. Prosthodont. 2005, 18, 219–224. [Google Scholar] [CrossRef]
- Attia, A.; Abdelaziz, K.M.; Freitag, S.; Kern, M. Fracture load of composite resin and feldspathic all-ceramic CAD/CAM crowns. J. Prosthet. Dent. 2006, 95, 117–123. [Google Scholar] [CrossRef]
- Conrad, H.J.; Seong, W.-J.; Pesun, I.J. Current ceramic materials and systems with clinical recommendations: A systematic review. J. Prosthet. Dent. 2007, 98, 389–404. [Google Scholar] [CrossRef]
- De Munck, J.; Van Landuyt, K.; Peumans, M.; Poitevin, A.; Lambrechts, P.; Braem, M.; Van Meerbeek, B. A Critical Review of the Durability of Adhesion to Tooth Tissue: Methods and Results. J. Dent. Res. 2005, 84, 118–132. [Google Scholar] [CrossRef]
- Van Noort, R.; Noroozi, S.; Howard, I.; Cardew, G. A critique of bond strength measurements. J. Dent. 1989, 17, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Cuzic, C.; Pricop, M.O.; Jivanescu, A.; Ursoniu, S.; Negru, R.M.; Romînu, M. Assessment of Different Techniques for Adhesive Cementation of All-Ceramic Systems. Medicina 2022, 58, 1006. [Google Scholar] [CrossRef]
- Rohr, N.; Fischer, J. Tooth surface treatment strategies for adhesive cementation. J. Adv. Prosthodont. 2017, 9, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Petrie, A.; Sabin, C. Medical Satistics at a Glance, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2009. [Google Scholar]
- Braver, S.L.; MacKinnon, D.P.; Page, M. Levine’s Guide to SPSS for Analysis of Variance, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2003. [Google Scholar]
- Qeblawi, D.M.; Muñoz, C.A.; Brewer, J.D.; Monaco, E.A. The effect of zirconia surface treatment on flexural strength and shear bond strength to a resin cement. J. Prosthet. Dent. 2010, 103, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Carrabba, M.; Vichi, A.; Louca, C.; Ferrari, M. Comparison of traditional and simplified methods for repairing CAD/CAM feldspathic ceramics. J. Adv. Prosthodont. 2017, 9, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Yen, T.-W.; Blackman, R.B.; Baez, R.J. Effect of acid etching on the flexural strength of a feldspathic porcelain and a castable glass ceramic. J. Prosthet. Dent. 1993, 70, 224–233. [Google Scholar] [CrossRef]
- Timokhin, A.R.; Komarova, L.A. Chemical reaction of ammonium bifluoride with quartz glass. Glass Ceram. 1985, 42, 267–269. [Google Scholar] [CrossRef]
- Sorensen, J.A.; Engelman, M.J.; Torres, T.J.; Avera, S.P. Shear bond strength of composite resin to porcelain. Int. J. Prosthodont. 1991, 4, 17–23. [Google Scholar] [PubMed]
- Sturz, C.R.; Faber, F.-J.; Scheer, M.; Rothamel, D.; Neugebauer, J. Effects of various chair-side surface treatment methods on dental restorative materials with respect to contact angles and surface roughness. Dent. Mater. J. 2015, 34, 796–813. [Google Scholar] [CrossRef] [Green Version]
- Della-Bona, A. Characterizing ceramics and the interfacial adhesion to resin: II—The relationship of surface treatment, bond strength, interfacial toughness and fractography. J. Appl. Oral Sci. 2005, 13, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Lung, C.Y.K.; Matinlinna, J.P. Aspects of silane coupling agents and surface conditioning in dentistry: An overview. Dent. Mater. 2012, 28, 467–477. [Google Scholar] [CrossRef]
- Carvalho, R.; Pegoraro, T.; Tay, F.; Pegoraro, L.; Silva, N.; Pashley, D. Adhesive permeability affects coupling of resin cements that utilise self-etching primers to dentine. J. Dent. 2003, 32, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.; Bernasconi, M. Adhesion to zirconia used for dental restorations: A systematic review and meta-analysis. J. Adhes. Dent. 2015, 17, 7–26. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.; Corazza, P.H.; Marocho, S.M.S.; Barbosa, S.H.; Bottino, M.A. Repair bond strength of microhybrid, nanohybrid and nano-filled resin composites: Effect of substrate resin type, surface conditioning and ageing. Clin. Oral Investig. 2013, 17, 1751–1758. [Google Scholar] [CrossRef] [Green Version]
- Calamia, J.R. Clinical evaluation of etched porcelain veneers. Am. J. Dent. 1989, 2, 9–15. [Google Scholar] [PubMed]
- Zaghloul, H.; Elkassas, D.W.; Haridy, M.F. Effect of incorporation of silane in the bonding agent on the repair potential of machinable esthetic blocks. Eur. J. Dent. 2014, 8, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Wahsh, M.M.; Ghallab, O.H. Influence of different surface treatments on micro shear bond strength of repair resin composite to two CAD/CAM esthetic restorative materials. Tanta Dent. J. 2015, 12, 178–184. [Google Scholar] [CrossRef] [Green Version]
- De Melo, R.M.; Valandro, L.F.; Bottino, M.A. Microtensile bond strength of a repair composite to leucite-reinforced feldspathic ceramic. Braz. Dent. J. 2007, 18, 314–319. [Google Scholar] [CrossRef]
- Kelly, J.R.; Nishimura, I.; Campbell, S.D. Ceramics in dentistry: Historical roots and current perspectives. J. Prosthet. Dent. 1996, 75, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Sadek, F.T.; Cury, Á.H.; Monticelli, F.; Ferrari, M.; Cardoso, P.E.C. The influence of the cutting speed on bond strength and integrity of microtensile specimens. Dent. Mater. 2005, 21, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Goracci, C.; Sadek, F.T.; Monticelli, F.; Cardoso, P.E.C.; Ferrari, M. Influence of substrate, shape, and thickness on microtensile specimens’ structural integrity and their measured bond strengths. Dent. Mater. 2004, 20, 643–654. [Google Scholar] [CrossRef]
- Queiroz, J.R.; Souza, R.O.; Nogueira Junior, L., Jr.; Ozcan, M.; Bottino, M.A. Influence of acid-etching and ceramic primers on the repair of a glass ceramic. Gen. Dent. 2012, 60, e79–e85. [Google Scholar]
- Şişmanoğlu, S.; Gürcan, A.T.; Yıldırım-Bilmez, Z.; Turunç-Oğuzman, R.; Gümüştaş, B. Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials. J. Adv. Prosthodont. 2020, 12, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Gherlone, E.; Sannino, G.; Rapanelli, A.; Crespi, R.; Gastaldi, G.; Capparé, P. Prefabricated Bar System for Immediate Loading in Edentulous Patients: A 5-Year Follow-Up Prospective Longitudinal Study. BioMed Res. Int. 2018, 2018, 7352125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capparé, P.; Ferrini, F.; Ruscica, C.; Pantaleo, G.; Tetè, G.; Gherlone, E.F. Digital versus Traditional Workflow for Immediate Loading in Single-Implant Restoration: A Randomized Clinical Trial. Biology 2021, 10, 1281. [Google Scholar] [CrossRef] [PubMed]
Material | Type | Manufacturer | Lot No. |
---|---|---|---|
Empress CAD | Leucite-reinforced glass ceramic CAD/CAM block | Ivoclar-Vivadent Schaan Liechtenstein | V01607, U50932, S49744, X11916 |
Yellow Porcelain Etch | Ceramic Etching gel | PPH Cerkamed Wojciech Pawlowski Stalowa Wola, Poland | 2106181 |
Clearfil Ceramic Primer Plus | Ceramic primer | Kuraray Noritake Dental, Tokyo, Japan | 760065 |
Panavia V5 | Dual-cure resin cement | Kuraray Noritake Dental, Tokyo, Japan | 4E0086 |
Groups | N 1 | Mean | SD 2 | Min 3 | Median | Max 4 |
---|---|---|---|---|---|---|
NT | 10 | 16.92 | 5.18 | 10.21 | 15.44 | 24.85 |
DH | 10 | 16.03 | 2.86 | 12.23 | 16.25 | 21.51 |
SH | 10 | 21.80 | 5.28 | 13.17 | 21.62 | 33.01 |
DNH | 10 | 26.45 | 3.68 | 18.30 | 27.71 | 30.82 |
SNH | 10 | 29.59 | 5.81 | 22.25 | 30.65 | 38.18 |
Groups | Shapiro–Wilk Test | Levene Test | ||||
---|---|---|---|---|---|---|
W 1 | p | F 2 | df1 | df2 | p | |
NT | 0.928 | 0.428 | 1.787 | 4 | 45 | 0.148 |
DH | 0.957 | 0.753 | ||||
SH | 0.947 | 0.639 | ||||
DNH | 0.898 | 0.210 | ||||
SNH | 0.906 | 0.255 |
Experimental Groups | SS 1 | df 2 | MS 3 | F 4 | p | Fcrit |
---|---|---|---|---|---|---|
Between groups | 1386.440 | 4 | 346.610 | 15.711 | <0.001 | 2.579 |
Within groups | 992.745 | 45 | 22.061 | |||
Total | 2379.185 | 49 |
Groups | Mean Difference | p | |
---|---|---|---|
NT | DH | 0.883 | 0.993 |
SH | −4.887 | 0.155 | |
DNH | −9.529 a | <0.001 | |
SNH | −12.688 a | <0.001 | |
DH | SH | −5.770 | 0.063 |
DNH | −10.412 a | <0.001 | |
SNH | −13.551 a | <0.001 | |
SH | DNH | −4.642 | 0.195 |
SNH | −7.781 a | 0.005 | |
DNH | SNH | −3.139 | 0.571 |
Source of Variation | SS 1 | df 2 | MS 3 | F 4 | p | η 5 |
---|---|---|---|---|---|---|
Main effects | ||||||
Temperature | 827.463 | 1 | 827.463 | 39.657 | <0.001 a | 0.524 |
Application regime | 198.426 | 1 | 198.426 | 9.510 | 0.004 a | 0.209 |
Interaction effects | ||||||
Temperature × Application regime | 17.305 | 1 | 17.305 | 0.829 | 0.369 | 0.023 |
Error | 751.159 | 36 | 20.866 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuzic, C.; Jivanescu, A.; Negru, R.M.; Hulka, I.; Rominu, M. The Influence of Hydrofluoric Acid Temperature and Application Technique on Ceramic Surface Texture and Shear Bond Strength of an Adhesive Cement. Materials 2023, 16, 4303. https://doi.org/10.3390/ma16124303
Cuzic C, Jivanescu A, Negru RM, Hulka I, Rominu M. The Influence of Hydrofluoric Acid Temperature and Application Technique on Ceramic Surface Texture and Shear Bond Strength of an Adhesive Cement. Materials. 2023; 16(12):4303. https://doi.org/10.3390/ma16124303
Chicago/Turabian StyleCuzic, Cristiana, Anca Jivanescu, Radu Marcel Negru, Iosif Hulka, and Mihai Rominu. 2023. "The Influence of Hydrofluoric Acid Temperature and Application Technique on Ceramic Surface Texture and Shear Bond Strength of an Adhesive Cement" Materials 16, no. 12: 4303. https://doi.org/10.3390/ma16124303
APA StyleCuzic, C., Jivanescu, A., Negru, R. M., Hulka, I., & Rominu, M. (2023). The Influence of Hydrofluoric Acid Temperature and Application Technique on Ceramic Surface Texture and Shear Bond Strength of an Adhesive Cement. Materials, 16(12), 4303. https://doi.org/10.3390/ma16124303