Bridging the Gap: Assessing Material Performance of Laboratory Specimens and Concrete Structures
Abstract
:1. Introduction
1.1. Background: Change from a Prescriptive to a Performance-Based Design
1.2. Difference between the Performance of Laboratory Specimens and Specimens Taken from the Structure
1.3. Quality Control on the Delivered Concrete and the Built Structure
1.4. Focus of the Present Contribution
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation and Testing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DIN 1045-2:2008-08; Concrete, Reinforced and Prestressed Concrete Structures—Part 2: Concrete—Specification, Properties, Production and Conformity—Application Rules for DIN EN 206-1. Beuth Verlag GmbH: Berlin, Germany, 2008.
- DIN EN 206:2021-06; Concrete—Specification, Performance, Production and Conformity. German version EN 206:2013+A2:2021. Beuth Verlag GmbH: Berlin, Germany, 2021.
- DIN EN 1992-1-1:2011-01; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. German version EN 1992-1-1:2004 + AC:2010. Beuth Verlag GmbH: Berlin, Germany, 2011.
- DIN EN 1992-1-1/NA:2013-04; National Annex—Nationally Determined Parameters—Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. Beuth Verlag GmbH: Berlin, Germany, 2013.
- DIN EN 1992-2/NA:2013-04; National Annex—Nationally Determined Parameters—Eurocode 2: Design of Concrete Structures—Part 2: Concrete Bridges—Design and Detailing Rules. Beuth Verlag GmbH: Berlin, Germany, 2013.
- DIN EN 1992-2:2010-12; Eurocode 2: Design of Concrete Structures—Part 2: Concrete Bridges—Design and Detailing Rules. German Version EN 1992-2:2005 + AC:2008. Beuth Verlag GmbH: Berlin, Germany, 2010.
- Heidkamp, H.; Papaioannou, I. Performance Based Design and Eurocode. Geotechnical safety and risk. In Proceedings of the 3rd International Symposium on Geotechnical Risk and Safety (ISGSR 2011), Munich, Germany, 2–3 June 2011; Bundesanstalt für Wasserbau: Karlsruhe, Germany, 2011; pp. 519–526, ISBN 978-3-939230-01-4. [Google Scholar]
- DIN EN 1990:2021-10; Eurocode: Basis of Structural Design. German version EN 1990:2002 + A1:2005 + A1:2005/AC:2010. Beuth Verlag GmbH: Berlin, Germany, 2021.
- DURACRETE. Brite EuRam III: DuraCrete—Probabilistic Performance Based Durability Design of Concrete Structures; Contract BRPR-CT95-1032; Project BE95-1347; Document BE95-1347/R17; CUR Gouda: Gouda, The Netherlands, 2000. [Google Scholar]
- Gehlen, C. Probabilistische Lebensdauerbemessung von Stahlbetonbauwerken: Zuverlässigkeitsbetrachtungen zur wirksamen Vermeidung von Bewehrungskorrosion, 1st ed.; Beuth: Berlin, Germany, 2000; ISBN 9783410657101. [Google Scholar]
- fib Bulletin 34. Model Code for Service Life Design; Fédération Internationale du Béton: Ecublens, Switzerland, 2006; ISBN 2883940746. [Google Scholar]
- Lozano Valcarcel, J.M.; Gehlen, C.; Kränkel, T.; Schiessl-Pecka, A. Instandsetzung von Tiefgaragen—Wann und warum? Beton Stahlbetonbau 2022, 117, 946–955. [Google Scholar] [CrossRef]
- Schiessl-Pecka, A.; Kapteina, G.; Buschmeier, S. (Eds.) System-Parkhaus mit Lebensdauermanagementkonzept—Zustandserfassung nach 8-Jähriger Nutzung. In Proceedings of the 6 Kolloquium “Erhaltung von Bauwerken”, Esslingen, Germany, 22–23 January 2019; Technische Akademie Esslingen e.V: Ostfildern, Germany, 2019. ISBN 978-3-943563-05-4. [Google Scholar]
- Beushausen, H.; Torrent, R.; Alexander, M.G. Performance-based approaches for concrete durability: State of the art and future research needs. Cem. Concr. Res. 2019, 119, 11–20. [Google Scholar] [CrossRef]
- Beushausen, H.; Fernandez Luco, L. (Eds.) Performance-Based Specifications and Control of Concrete Durability: State-of-the-Art Report RILEM TC 230-PSC, 1st ed.; Springer: Dordrecht, The Netherlands, 2016; ISBN 9789401773096. [Google Scholar]
- Wally, G.B.; Magalhães, F.C.; Da Pinto Silva Filho, L.C. From prescriptive to performance-based: An overview of international trends in specifying durable concretes. J. Build. Eng. 2022, 52, 104359. [Google Scholar] [CrossRef]
- Gjørv, O.E. Durability Design and Construction Quality of Concrete Structures. In Proceedings of the International Conference on Advances in Concrete and Structures (ICACS 2003), Xuzhou, China, 17–19 September 2003; RILEM Publ: Bagneux, France, 2003; pp. 309–320, ISBN 2-912143-41-1. [Google Scholar]
- Jacobs, F. Dauerhaftigkeit von Beton im Bauteil. Beton Stahlbetonbau 2019, 114, 383–391. [Google Scholar] [CrossRef]
- Jacobs, F.; Hunkeler, F.; Mühlan, B. Prüfung und Bewertung der Betonqualität am Bauwerk: Testing and Evaluation of the Concrete Quality in the Construction; Federal Department for the Environment, Transport, Energy and Communications, Federal Roads Office: Bern, Switzerland, 2018. [Google Scholar]
- Concrete Society. In Situ Concrete Strength: An Investigation into the Relationship between Core Strength and Standard Cube Strength; Project Report 3; The Concrete Society: Camberley, UK, 2004; ISBN 9780936691862. [Google Scholar]
- Gouws, S.M.; Alexander, M.G.; Maritz, G. Use of Durability Index Test for the Assessment and Control of Concrete Quality on Site. Concr. Beton 2001, 98, 5–16. [Google Scholar]
- Breitenbücher, R.; Gehlen, C.; Schiessl, P.; van den Hoonaard, J.; Siemes, A.; Bouw, T.N. Service life design for the Western Scheldt Tunnel. In Durability of Building Materials and Components 8. Service Life and Asset Management. In Proceedings of the 8th International Conference on Durability of Building Materials and Components (8 DBMC), Vancouver, BC, Canada, 30 May–3 June 1999; Lacasse, M.A., Ed.; NRC Research Press: Ottawa, ON, Canada, 1999; pp. 3–15, ISBN 0660177374. [Google Scholar]
- DIN EN 12390-3:2019-10; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. German Version EN 12390-3:2019. Beuth Verlag GmbH: Berlin, Germany, 2019.
- DIN EN 12390-6:2010-09; Testing Hardened Concrete—Part 6: Tensile Splitting Strength of Test Specimens. German Version EN 12390-6:2009. Beuth Verlag GmbH: Berlin, Germany, 2010.
- DIN EN 12350-6:2019-09; Testing Fresh Concrete—Part 6: Density. German Version EN 12350-6:2019. Beuth Verlag GmbH: Berlin, Germany, 2019.
- DIN EN 12350-5:2019-09; Testing Fresh Concrete—Part 5: Flow Table Test. German Version EN 12350-5:2019. Beuth Verlag GmbH: Berlin, Germany, 2019.
- DIN EN 12350-4:2019-09; Testing Fresh Concrete—Part 4: Degree of Compactability. German version EN 12350-4:2019. Beuth Verlag GmbH: Berlin, Germany, 2019.
- DIN EN 12350-7:2022-05; Testing Fresh Concrete—Part 7: Air Content—Pressure methods. German version EN 12350-7:2019 + AC:2022. Beuth Verlag GmbH: Berlin, Germany, 2019.
- Gehlen, C.; Schiessl, P. Probability-based durability design for the Western Scheldt Tunnel. Struct. Concr. 1999, P1, 1–7. [Google Scholar]
- Gehlen, C.; Ludwig, H.-M. Compliance Testing for Probabilistic Design Purposes: Brite/EuRam, 1998 Project No. BE95-1347, R 8, 114; European Union: Brussels, Belgium, 1998. [Google Scholar]
- Schiessl, P.; Mayer, T.F. Lebensdauermanagement von Stahlbetonbauwerken. Beton Stahlbetonbau 2009, 104, 747–753. [Google Scholar] [CrossRef]
- ZTV-ING. Zusätzliche Technische Vertragsbedingungen und Richtlinien für Ingenieurbauten; Bast: Bergisch Gladbach, Germany, 2022. [Google Scholar]
- DIN EN 197-1:2011-11; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements. German version EN 197-1:2011. Beuth Verlag GmbH: Berlin, Germany, 2019.
- Li, Y.; Zhou, Y.; Wang, R.; Li, Y.; Wu, X.; Si, Z. Experimental investigation on the properties of the interface between RCC layers subjected to early-age frost damage. Cem. Concr. Compos. 2022, 134, 104745. [Google Scholar] [CrossRef]
- Bundesanstalt für Wasserbau. BAWMerkblatt Dauerhaftigkeitsbemessung und Bewertung von Stahlbetonbauwerken bei Carbonatisierung und Chlorideinwirkung (MDCC); Bundesanstalt für Wasserbau: Karlsruhe, Germany, 2019. [Google Scholar]
- Fédération Internationale du Béton. Benchmarking of Deemed-to-Satisfy Provisions in Standards: Durability of Reinforced Concrete Structures Exposed to Chlorides—State-of-the-Art Report; fib Bulletin 76; Fédération Internationale du Béton: Lausanne, Switzerland, 2015; ISBN 9782883941168. [Google Scholar]
- DIN EN 12390-13:2021-09; Testing Hardened Concrete—Part 13: Determination of Secant Modulus of Elasticity in Compression. German version EN 12390-13:2021. Beuth Verlag GmbH: Berlin, Germany, 2019.
- DIN EN 12390-12:2020-04; Testing Hardened Concrete—Part 12: Determination of the Carbonation Resistance of Concrete—Accelerated Carbonation Method. German version EN 12390-12:2020. Beuth Verlag GmbH: Berlin, Germany, 2019.
- DIN EN 12390-10:2019-08; Testing Hardened Concrete—Part 10: Determination of the Carbonation Resistance of Concrete at Atmospheric Levels of Carbon Dioxide. German version EN 12390-10:2018. Beuth Verlag GmbH: Berlin, Germany, 2019.
Element (Concrete) | Element Type | Strength Class | Cement | w/c-Ratio |
---|---|---|---|---|
E1 (C1) | Abutment | C30/37 | CEM II/A-LL | 0.49 |
E2 (C2) | Superstructure | C35/45 | CEM III/A | 0.45 |
E3 (C3) | Bridge Cap | C25/30 | CEM I | 0.48 |
E4 (C4) | Abutment | C30/37 | CEM III/A | 0.50 |
E5 (C5) | Superstructure | C40/50 | CEM III/A | 0.45 |
Standard | - | [2] | [33] | - |
Concrete | Fresh Concrete Temperature [°C] | Spread in Flow Table Test [mm] | Bulk Density [kg/m3] |
---|---|---|---|
C1 | 13.6 | 460 | 2400 |
C2 | 25.2 | 460 | 2380 |
C3 | 11.0 | 480 | 2300 |
C4 | 17.8 | 480 | 2340 |
C5 | 25.6 | 460 | 2370 |
Standard | - | [26] | [25] |
Concrete | Actual Structure | Test Structure Type | Curing Periods | Curing Method |
---|---|---|---|---|
C1 | Abutment | Wall | 7 and 14 days | In formwork |
C2 | Superstructure | Wall | 1 and 7 days | In formwork |
C3 | Bridge Cap | Slab | 1 and 7 days | Covered with foil |
C4 | Abutment | Wall | 7 days | In formwork |
C5 | Superstructure | Wall | 1 and 7 days | In formwork |
Concrete | Test Structure Type | Series | Tested for 1 |
---|---|---|---|
C1 | Wall | Laboratory and Structure | CS and RCM |
C2 | Wall | Laboratory, Structure and Structure* | CS and RCM |
C3 | Slab | Laboratory, Structure and Structure* | CS and RCM |
C4 | Wall | Laboratory and Structure* | CS, RCM, EM, and aC |
C5 | Wall | Laboratory, Structure and Structure* | CS, RCM, EM, and aC |
Series (Designation) | Cast Tools and Methods | Storage in Mold | Curing |
---|---|---|---|
Laboratory (L) | Standard cube molds and vibrating table | 1 day | 27 days underwater |
Structure (S) | Formwork and compaction as “real structure” | - | In formwork for a defined number of days (see Table 3) |
Structure* (S*) | Formwork and compaction as “real structure” | - | 7 days in formwork, then 21 days underwater |
Concrete | Series | ||
---|---|---|---|
Laboratory | Structure | Structure* | |
C1 | C1_L | C1_S | - |
C2 | C2_L | C2_S | C2_S* |
C3 | C3_L | C3_S | C3_S* |
C4 | C4_L | - | C4_S* |
C5 | C5_L | C5_S | C5_S* |
Concrete | Series | ||||||
---|---|---|---|---|---|---|---|
Laboratory | Structure | Structure* | |||||
1 d 1 | 7 d 1 | 14 d 1 | Core | 7 d + L 2 | Core + L | ||
C1 | C1_L | - | C1_S-7d | C1_S-14d | C1_S-C | - | - |
C2 | C2_L | C2_S-1d | C2_S-7d | - | C2_S-C | C2_S*-7d | C2_S*-C |
C3 | C3_L | C3_S-1d | C3_S-7d | - | C3_S-C | C3_S*-7d | C3_S*-C |
C4 | C4_L | - | - | - | - | C4_S*-7d | C4_S*-C |
C5 | C5_L | C5_S-1d | C5_S-7d | - | C5_S-C | C5_S*-7d | - |
Concrete | Series | ||
---|---|---|---|
Laboratory | Structure | Structure* | |
C4 | C4_L | - | C4_S* |
C5 | C5_L | C5_S | C5_S* |
Concrete | Series | ||||||
---|---|---|---|---|---|---|---|
Laboratory | Structure | Structure* | |||||
1 d 1 | 7 d 1 | 14 d 1 | Core | 7d + L 2 | Core + L | ||
C4 | C4_L | - | - | - | - | C4_S*-7d | C4_S*-C |
C5 | C5_L | C5_S-1d | C5_S-7d | - | C5_S-C | C5_S*-7d | C5_S*-C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano-Valcarcel, J.M.; Ov, D.; Kränkel, T.; Gehlen, C.; Breitenbücher, R. Bridging the Gap: Assessing Material Performance of Laboratory Specimens and Concrete Structures. Materials 2023, 16, 4306. https://doi.org/10.3390/ma16124306
Lozano-Valcarcel JM, Ov D, Kränkel T, Gehlen C, Breitenbücher R. Bridging the Gap: Assessing Material Performance of Laboratory Specimens and Concrete Structures. Materials. 2023; 16(12):4306. https://doi.org/10.3390/ma16124306
Chicago/Turabian StyleLozano-Valcarcel, Juan M., David Ov, Thomas Kränkel, Christoph Gehlen, and Rolf Breitenbücher. 2023. "Bridging the Gap: Assessing Material Performance of Laboratory Specimens and Concrete Structures" Materials 16, no. 12: 4306. https://doi.org/10.3390/ma16124306
APA StyleLozano-Valcarcel, J. M., Ov, D., Kränkel, T., Gehlen, C., & Breitenbücher, R. (2023). Bridging the Gap: Assessing Material Performance of Laboratory Specimens and Concrete Structures. Materials, 16(12), 4306. https://doi.org/10.3390/ma16124306