On the Chloride Distribution in Concrete and Mortar Samples after an RCM Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and RCM Test Setup
2.2. Extraction of Drill Powder
2.3. Chemical Analysis Regarding Chloride Content
3. Results and Discussion
3.1. Migration Coefficients and Penetration Depths Obtained in RCM Test
3.2. Chloride Profiles on Concrete Samples
3.3. Chloride Profiles on Mortar Samples
3.3.1. Overview of Obtained Chloride Profiles
3.3.2. Influence of Edge Effects
3.3.3. Influence of Timing of Powder Extraction
3.4. Comparison of Measured and Theoretical Chloride Profiles
3.4.1. Comparison for Concrete Samples
3.4.2. Comparison of Mortar Samples
3.4.3. Chloride Content at Color Change Boundary
4. Conclusions
- The chloride profiles obtained for concrete samples are relatively flat due to the uneven penetration depth through the aggregates. The irregularity in the penetration front leads to a mixing of different chloride contents, and thus to a flattening of the profile, especially in the transition area. According to the current state of knowledge, and provided that a large area of drill powder is extracted, a steep gradient is not achievable with the means of concrete powder extraction.
- The considerations regarding chloride profiles for mortar samples have shown that the extraction method of the mortar powder, the involved area, and the timing of drill powder extraction, respectively, have a great influence on the course of the profile.
- If there are no edge effects in the area of the analyzed drill powder and the powder extraction takes place directly after the end of the RCM test, the total chloride profiles obtained on mortar samples can confirm Tang’s assumption of a steep gradient. Thus, the method of Tang to derive the chloride migration coefficient from an RCM test regarding the gradient of the chloride profile could be confirmed. Further studies on the influence of extraction timing are needed, especially to evaluate whether there are binder-dependent differences.
- With regard to the free chloride concentration at the color change boundary of the indicator, significantly higher values than the model assumption of 0.07 mol/L [2] were determined. In principle, large variations were found for both the free and the total chloride concentrations in the area of the penetration depth. Based on the investigations conducted, total chloride contents at color change boundary between 0.5 and 1.0 m.-% by cement could be found for CEM I and CEM III/A binders. Further investigations are required to be able to make a definite statement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breitenbücher, R.; Gehlen, C.; Schießl, P.; Hoonard Van Den, J.; Siemes, T. Service Life Design for the Western Scheldt Tunnel. In Proceedings of the Eight International Conference on Durability of Building Materials and Components, Vancouver, BC, Canada, 3 June–30 May 1999; NRC Research Press: Ottawa, ON, Canada, 1999; pp. 3–15. [Google Scholar]
- Tang, L. Chloride Transport in Concrete: Measurement and Prediction. Ph.D. Thesis, Chalmers University of Technology, Department of Building Materials, Göteborg, Sweden, 1996. [Google Scholar]
- Nordtest. NT Build 492 Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments; Nordtest, 1999. [Google Scholar]
- Bundesanstalt für Wasserbau. BAWMerkblatt Chlorideindringwiderstand von Beton (BAW-Merkblatt “Chlorideindringwiderstand”); Bundesanstalt für Wasserbau: Karlsruhe, Germany, 2004.
- Tang, L.; Sørensen, H.E. Precision of the Nordic Test Methods for Measuring the Chloride Diffusion/Migration Coefficients of Concrete. Mat. Struct. 2001, 34, 479–485. [Google Scholar] [CrossRef]
- Spiesz, P. Durability of Concrete with Emphasis on Chloride Migration. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2013. [Google Scholar]
- Stanish, K.D. The Migration of Chloride Ions in Concrete. Ph.D. Thesis, University of Toronto, Graduate Department of Civil Engineering, Toronto, ON, Canada, 2002. [Google Scholar]
- Spiesz, P.; Ballari, M.M.; Brouwers, H.J.H. RCM: A New Model Accounting for the Non-Linear Chloride Binding Isotherm and the Non-Equilibrium Conditions between the Free- and Bound-Chloride Concentrations. Constr. Build. Mater. 2012, 27, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Spiesz, P.; Brouwers, H.J.H. The Apparent and Effective Chloride Migration Coefficients Obtained in Migration Tests. Cem. Concr. Res. 2013, 48, 116–127. [Google Scholar] [CrossRef]
- Spiesz, P.; Brouwers, H.J.H. Influence of the Applied Voltage on the Rapid Chloride Migration (RCM) Test. Cem. Concr. Res. 2012, 42, 1072–1082. [Google Scholar] [CrossRef]
- Voinitchi, D.; Julien, S.; Lorente, S. The Relation between Electrokinetics and Chloride Transport through Cement-Based Materials. Cem. Concr. Compos. 2008, 30, 157–166. [Google Scholar] [CrossRef]
- Baroghel-Bouny, V.; Belin, P.; Maultzsch, M.; Henry, D. AgNO3 Spray Tests: Advantages, Weaknesses, and Various Applications to Quantify Chloride Ingress into Concrete. Part 2: Non-Steady-State Migration Tests and Chloride Diffusion Coefficients. Mater. Struct. 2007, 40, 783–799. [Google Scholar] [CrossRef]
- Nordtest. NT Build 355 Concrete, Mortar and Cement-Based Repair Materials: Chloride Diffusion Coefficient from Migration Cell Experiments; Nordtest, 1997. [Google Scholar]
- EN 197-1:2011; Zement-Teil 1: Zusammensetzung, Anforderungen Und Konformitätskriterien von Normalzement. Deutsche Fassung. Deutsches Institut für Normung e.V.: Berlin, Germany, 2011.
- EN 12390-3:2019; Prüfung von Festbeton-Teil 3: Druckfestigkeit von Probekörpern. Deutsche Fassung. Deutsches Institut für Normung e.V.: Berlin, Germany, 2019.
- EN 196-1:2016; Prüfverfahren Für Zement-Teil 1: Bestimmung Der Festigkeit; Deutsche Fassung. Deutsches Institut für Normung e.V.: Berlin, Germany, 2016.
- Bundesanstalt für Wasserbau. BAWMerkblatt Dauerhaftigkeitsbemessung Und -Bewertung von Stahlbetonbauwerken Bei Carbonatisierung Und Chlorideinwirkung (MDCC); Bundesanstalt für Wasserbau: Karlsruhe, Germany, 2019.
- Hunkeler, F.; Ungricht, H.; Deillon, F. Untersuchungen zur Chloridbestimmung im Beton und Durchführung eines 2-stufigen Ringversuchs; Technische Forschung und Beratung für Zement und Beton, Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation, Bundesamt für Strassen, Eds.; Forschungsauftrag Nr. 88/97 auf Antrag der Arbeitsgruppe Brückenforschung: Wildegg, Switzerland, 2000.
- Springenschmid, R.; Dorner, H.; Kleiner, G. Anleitung zur Bestimmung des Chloridgehaltes von Beton. Deutscher Ausschuss für Stahlbeton, Ed.; Deutscher Ausschuß für Stahlbeton, Beuth: Berlin, Germany, 1989. [Google Scholar]
- Rahimi, A. Semiprobabilistisches Nachweiskonzept Zur Dauerhaftigkeitsbemessung Und -Bewertung von Stahlbetonbauteilen Unter Chlorideinwirkung. Ph.D. Thesis, Technische Universität München, Bau Geo Umwelt, Munich, Germany, 2016. [Google Scholar]
- Loser, R.; Lothenbach, B.; Leemann, A.; Tuchschmid, M. Chloride Resistance of Concrete and Its Binding Capacity-Comparison between Experimental Results and Thermodynamic Modeling. Cem. Concr. Compos. 2010, 32, 34–42. [Google Scholar] [CrossRef]
- Yuan, Q. Fundamental Studies on Test Methods for the Transport of Chloride Ions in Cementitious Materials. Ph.D. Thesis, University of Ghent, Ghent, Belgium, 2009. [Google Scholar]
- Otsuki, N.; Nagataki, S.; Nakashita, K. Evaluation of the AgNO3 Solution Spray Method for Measurement of Chloride Penetration into Hardened Cementitious Matrix Materials. Constr. Build. Mater. 1992, 7, 587–592. [Google Scholar] [CrossRef]
- Lay, S. Abschätzung Der Wahrscheinlichkeit Tausalzinduzierter Bewehrungskorrosion: Baustein Eines Systems Zum Lebenszyklusmanagement von Stahlbetonbauwerken. Ph.D. Thesis, Technische Universität München, Bau Geo Umwelt, Munich, Germany, 2006. [Google Scholar]
- Baroghel-Bouny, V.; Belin, P.; Maultzsch, M.; Henry, D. AgNO3 Spray Tests: Advantages, Weaknesses, and Various Applications to Quantify Chloride Ingress into Concrete. Part 1: Non-Steady-State Diffusion Tests and Exposure to Natural Conditions. Mater. Struct. 2007, 40, 759–781. [Google Scholar] [CrossRef]
- Collepardi, M. Quick Method to Determine Free and Bound Chlorides in Concrete. In Proceedings of the 1st RILEM workshop on Chloride Penetration into Concrete, Saint-Rémy-lès-Chevreuse, France, 15–18 October 1995; Department of Science of Materials and Earth, University of Ancona: Ancona, Italy, 1995. [Google Scholar]
- He, F.; Shi, C.; Yuan, Q.; Chen, C.; Zheng, K. AgNO3-Based Colorimetric Methods for Measurement of Chloride Penetration in Concrete. Constr. Build. Mater. 2012, 26, 1–8. [Google Scholar] [CrossRef]
- Andrade, C.; Castellote, M.; Alonso, C.; González, C. Relation between Colourimetric Chloride Penetration Depth and Charge Passed in Migration Tests of the Type of Standard ASTM C1202-91. Cem. Concr. Res. 1999, 29, 417–421. [Google Scholar] [CrossRef]
- McPolin, D.; Basheer, P.A.M.; Long, A.E.; Grattan, K.T.V.; Sun, T. Obtaining Progressive Chloride Profiles in Cementitious Materials. Constr. Build. Mater. 2005, 19, 666–673. [Google Scholar] [CrossRef]
- Meck, E.; Sirivivatnanon, V. Field Indicator of Chloride Penetration Depth. Cem. Concr. Res. 2003, 33, 1113–1117. [Google Scholar] [CrossRef]
- Yuan, Q.; Shi, C.; He, F.; Schutter, G.D.; Audenaert, K.; Zheng, K. Effect of Hydroxyl Ions on Chloride Penetration Depth Measurement Using the Colorimetric Method. Cem. Concr. Res. 2008, 38, 1177–1180. [Google Scholar] [CrossRef]
- He, F.; Shi, C.; Yuan, Q.; An, X.; Tong, B. Calculation of Chloride Concentration at Color Change Boundary of AgNO3 Colorimetric Measurement. Cem. Concr. Res. 2011, 41, 1095–1103. [Google Scholar] [CrossRef]
- Shi, C.; Yuan, Q.; He, F.; Hu, X. Transport and Interactions of Chlorides in Cement-Based Materials; CRC Press, Taylor and Francis Group: New York, NY, USA, 2020. [Google Scholar]
Specimen | Binder | w/c | 0/2 | 2/8 | 8/16 | Water | Cement | Comp. Strength | Voltage | Duration | |
---|---|---|---|---|---|---|---|---|---|---|---|
[kg/m3] | [kg/m3] | [kg/m3] | [kg/m3] | [kg/m3] | [N/mm²] | [V] | [h] | ||||
concrete | CIII-1.1 | CEM III/A | 0.5 | 439.83 | 774.11 | 545.39 | 185.0 | 370.0 | 49.0 | 30 | 48 |
CIII-1.2 | CEM III/A | 30 | 48 | ||||||||
CIII-1.3 | CEM III/A | 30 | 48 | ||||||||
CII-1.1 | CEM II/A-LL | 0.5 | 439.83 | 774.11 | 545.39 | 185.0 | 370.0 | 48.0 | 20 | 24 | |
CII-1.2 | CEM II/A-LL | 20 | 24 | ||||||||
CII-1.3 | CEM II/A-LL | 20 | 24 | ||||||||
CII-2.1 | CEM II/A-LL | 0.5 | 563 | 652 | 572 | 181 | 362 | 50.1 | 25 | 24 | |
CII-2.2 | CEM II/A-LL | 25 | 24 | ||||||||
CIII-2.1 | CEM III/A | 0.5 | 563 | 652 | 572 | 181 | 362 | 56.9 | 30 | 48 | |
CIII-2.2 | CEM III/A | 30 | 48 | ||||||||
mortar | MI-1.1 | CEM I | 0.5 | 1718.9 | 0 | 0 | 286.5 | 573.0 | 53.3 | 15 | 24 |
MI-1.2 | CEM I | 15 | 24 | ||||||||
MIII-1.1 | CEM III/A | 0.5 | 1718.9 | 0 | 0 | 286.5 | 573.0 | 46.6 | 30 | 48 | |
MIII-1.2 | CEM III/A | 30 | 48 | ||||||||
MIII-2.1 | CEM III/A | 30 | 48 | ||||||||
MIII-2.2 | CEM III/A | 30 | 67 |
Specimen | Extraction Method | Extraction Timing | Chemical Analysis Method |
---|---|---|---|
CIII-1.1 | a | ca. 3.5 weeks after RCM | Procedure 1 (see Section 2.3) |
CIII-1.2 | |||
CIII-1.3 | |||
CII-1.1 | a | ca. 3 weeks after RCM | |
CII-1.2 | |||
CII-1.3 | |||
CII-2.1 | b | directly after RCM | |
CII-2.2 | |||
CIII-2.1 | |||
CIII-2.2 | |||
MI-1.1 | c | directly after RCM | Procedure 2 (see Section 2.3) |
MI-1.2 | d | ca. 4.5 weeks after RCM | |
MIII-1.1 | c | directly after RCM | |
MIII-1.2 | d | ca. 3.5 weeks after RCM | |
MIII-2.1 | d | directly after RCM | |
MIII-2.2 | d | directly after RCM |
Specimen | Binder | Migration Coefficient DRCM | Penetration Depth xd |
---|---|---|---|
[×10−12 m²/s] | [mm] | ||
CIII-1.1 | CEM III/A | 5.1 | 21.5 |
CIII-1.2 | 5.2 | 21.8 | |
CIII-1.3 | 4.3 | 18.5 | |
CII-1.1 | CEM II/A-LL | 16.5 | 22.8 |
CII-1.2 | 14.8 | 20.7 | |
CII-1.3 | 14.6 | 20.0 | |
CII-2.1 | CEM II/A-LL | 13.0 | 23.8 |
CII-2.2 | 12.4 | 21.8 | |
CIII-2.1 | CEM III/A | 3.2 | 13.9 |
CIII-2.2 | 2.8 | 12.3 | |
MI-1.1 | CEM I | 13.5 | 14.5 |
MI-1.2 | 15.3 | 16.2 | |
MIII-1.1 | CEM III/A | 3.5 | 14.2 |
MIII-1.2 | 3.4 | 14.7 | |
MIII-2.1 | 3.1 | 12.4 | |
MIII-2.2 | 2.8 | 15.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drenkard, H.; Fischer, C.; Sauer, V.; Gehlen, C. On the Chloride Distribution in Concrete and Mortar Samples after an RCM Test. Materials 2023, 16, 2952. https://doi.org/10.3390/ma16082952
Drenkard H, Fischer C, Sauer V, Gehlen C. On the Chloride Distribution in Concrete and Mortar Samples after an RCM Test. Materials. 2023; 16(8):2952. https://doi.org/10.3390/ma16082952
Chicago/Turabian StyleDrenkard, Hannah, Christian Fischer, Veit Sauer, and Christoph Gehlen. 2023. "On the Chloride Distribution in Concrete and Mortar Samples after an RCM Test" Materials 16, no. 8: 2952. https://doi.org/10.3390/ma16082952
APA StyleDrenkard, H., Fischer, C., Sauer, V., & Gehlen, C. (2023). On the Chloride Distribution in Concrete and Mortar Samples after an RCM Test. Materials, 16(8), 2952. https://doi.org/10.3390/ma16082952