Localized Corrosion of Stainless Steel Triggered by Typical Inclusions in NaCl Solution: Oxy-Sulfide and MnS
Abstract
:1. Introduction
Steel Type | Inclusion Type (Composition) | Ref. |
---|---|---|
316L stainless steel | (Mg, Al, Ca) oxides | [5] |
304 stainless steel | MnO·SiO2(CrOx-Al2O3) | [6] |
Austenitic stainless steel | CaO·SiO2·Al2O3·MnO·MgO | [13] |
18Cr-8Ni stainless steel | 47MnO-47SiO2-6Cr2O3 | [15] |
Si-Mn killed 304 stainless steel | Al2O3-SiO2-MnO-CaO | [17] |
Stainless steel | AI/Ti/Mn/Cr oxide inclusions | [19] |
Saw wire steels | dual-phase (MnO-SiO2-Al2O3) + (SiO2) inclusions | [29] |
Si-killed stainless steel | Al2O3-SiO2-CaO-MnO | [30] |
Ferrite stainless steel | MgO·Al2O3-CaO-TiOx | [31] |
316L stainless steel | SiO2-Cr2O3-MnO | [32] |
Y addition stainless steel | (SiO2-Y2O3)–(MnO-Cr2O3-Al2O3) | [16] |
Si-deoxidized 18Cr-8Ni stainless steels | Al2O3-MgO-SiO2-MnO | [33] |
304 stainless steel | (CaO-SiO2-Al2O3-MgO)–MgO·Al2O3 | [34] |
Al–Ti–Ca complex deoxidized steel | Al–Ti–Ca–O inclusion | [35] |
SUH 409L stainless steel | MgO·Al2O3 | [36] |
2. Experimental and Materials
2.1. Sample Preparation
2.2. Surface Analyses
2.3. Corrosion Tests
2.3.1. Immersion Test
2.3.2. Microelectrochemical Test
3. Results and Discussion
3.1. Inclusion Characterizations
3.1.1. FE-SEM Analyses
3.1.2. SKPFM Measurements
3.2. Immersion Tests
3.3. Microelectrochemical Tests
4. Summary
- (1)
- Two types of inclusions are formed in the stainless steel: MnS and oxy-sulfide inclusion, where oxy-sulfide consists of a polygonal oxide part (Al/Cr/Mn/Ti/O) and a round sulfide (MnS) part.
- (2)
- In oxy-sulfide, the surface Volta potential of sulfide is lower than that of the surrounding matrix, while the surface Volta potential of oxide does not differ much from that of the surrounding matrix.
- (3)
- Both the MnS and sulfide parts of oxy-sulfide are easily dissolved in NaCl solution, while the oxide part of oxy-sulfide is almost insoluble.
- (4)
- The matrix containing oxy-sulfide inclusion has multiple current fluctuations in the passive region compared to the matrix with only the matrix and the matrix containing MnS, which may be attributed to the multi-interface coupling effect caused by the complex composition of the oxide. This also indicates that the dissolution of oxy-sulfide inclusion is complex, including not only the sulfide dissolution and matrix repassivation but also the oxide dissolution.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stewart, J.; Williams, D.E. The initiation of pitting corrosion on austenitic stainless steel on the role and importance of sulphide inclusions. Corros. Sci. 1992, 33, 457–474. [Google Scholar] [CrossRef]
- Szummer, A.; Janik-Czachor, M.; Hofmann, S. Discontinuity of the passivating film at nonmetallic inclusions in stainless steels. Mater. Chem. Phys. 1993, 34, 181–183. [Google Scholar] [CrossRef]
- Szklarska-Smialowska, Z. Mechanism of pit nucleation by electrical breakdown of the passive film. Corros. Sci. 2002, 44, 1143–1149. [Google Scholar] [CrossRef]
- Wranglen, G. Pitting and sulphide inclusions in steel. Corros. Sci. 1974, 14, 331–349. [Google Scholar] [CrossRef]
- Zheng, S.; Li, C.; Qi, Y.; Chen, L.; Chen, C. Mechanism of (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion. Corros. Sci. 2013, 67, 20–31. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, L.; Pistorius, P.C. Transformation of Oxide Inclusions in Type 304 Stainless Steels during Heat Treatment. Metall. Mater. Trans. B 2017, 48, 2281–2292. [Google Scholar] [CrossRef]
- Eklund, G.S. Initiation of Pitting at Sulfide Inclusions in Stainless Steel. J. Electrochem. Soc. 1974, 121, 467–473. [Google Scholar] [CrossRef]
- Muto, I.; Ito, D.; Hara, N. Microelectrochemical Investigation on Pit Initiation at Sulfide and Oxide Inclusions in Type 304 Stainless Steel. J. Electrochem. Soc. 2009, 156, C55–C61. [Google Scholar] [CrossRef]
- Chiba, A.; Muto, I.; Sugawara, Y.; Hara, N. Effect of atmospheric aging on dissolution of MnS inclusions and pitting initiation process in type 304 stainless steel. Corros. Sci. 2016, 106, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Chiba, A.; Muto, I.; Sugawara, Y.; Hara, N. Pit Initiation Mechanism at MnS Inclusions in Stainless Steel: Synergistic Effect of Elemental Sulfur and Chloride Ions. J. Electrochem. Soc. 2013, 160, C511–C520. [Google Scholar] [CrossRef]
- Pistorius, P.C.; Burstein, G.T. Metastable pitting corrosion of stainless steel and the transition to stability. Philos. Trans. R. Soc. Lond. A 1992, 341, 531–559. [Google Scholar] [CrossRef]
- Ernst, P.; Newman, R.C. Pit growth studies in stainless steel foils. I. Introduction and pit growth kinetics. Corros. Sci. 2002, 44, 927–941. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Kim, S.-K.; Kang, Y.-B.; Lee, H.-G. Compositional Evolution of Oxide Inclusions in Austenitic Stainless Steel during Continuous Casting. Steel Res. Int. 2015, 86, 284–292. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, L.; Li, S. Transient Evolution of Inclusions during Calcium Modification in Linepipe Steels. ISIJ Int. 2014, 54, 2772–2779. [Google Scholar] [CrossRef] [Green Version]
- Shibata, H.; Tanaka, T.; Kimura, K.; Kitamura, S.Y. Composition change in oxide inclusions of stainless steel by heat treatment. Ironmak. Steelmak. 2013, 37, 522–528. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, S.; Li, J.; Wu, J. Evolution of oxide inclusions in stainless steel containing yttrium during thermo-mechanical treatment. J. Mater. Res. Technol. 2020, 9, 5982–5990. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Zhang, L.; Ren, Y. Effect of calcium treatment on inclusions in Si-Mn-killed 304 stainless steels. J. Mater. Res. Technol. 2020, 9, 11351–11360. [Google Scholar] [CrossRef]
- Szklarska-Śmialowska, Z.; Szummer, A.; Janik-Czachor, M. Electron Microprobe Study of the Effect of Sulphide Inclusions on the Nucleation of Corrosion Pits in Stainless Steels. Br. Corros. J. 1970, 5, 159–161. [Google Scholar] [CrossRef]
- Baker, M.A.; Castle, J.E. The initiation of pitting corrosion of stainless steels at oxide inclusions. Corros. Sci. 1992, 33, 1295–1312. [Google Scholar] [CrossRef]
- Ha, H.Y.; Park, C.J.; Kwon, H.S. Effects of non-metallic inclusions on the initiation of pitting corrosion in 11% Cr ferritic stainless steel examined by micro-droplet cell. Corros. Sci. 2007, 49, 1266–1275. [Google Scholar] [CrossRef]
- Li, D.; Chen, X.; Fu, P.; Ma, X.; Liu, H.; Chen, Y.; Cao, Y.; Luan, Y.; Li, Y. Inclusion flotation-driven channel segregation in solidifying steels. Nat. Commun. 2014, 5, 5572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castle, J.E.; Ke, R. Studies by auger spectroscopy of pit initiation at the site of inclusions in stainless steel. Corros. Sci. 1990, 30, 409–428. [Google Scholar] [CrossRef]
- Bai, G.; Lu, S.; Li, D.; Li, Y. Effects of Boron on Microstructure and Metastable Pitting. J. Electrochem. Soc. 2015, 162, C473. [Google Scholar] [CrossRef]
- Zheng, S.J.; Wang, Y.J.; Zhang, B.; Zhu, Y.L.; Liu, C.; Hu, P.; Ma, X.L. Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels. Acta Mater. 2010, 58, 5070–5085. [Google Scholar] [CrossRef]
- Suter, T.; Biihni, H. A new microelectrochemical method to study pit initiation on stainless steels. Electrochim. Acta 1997, 42, 3275–3280. [Google Scholar] [CrossRef]
- Webb, E.G.; Alkire, R.C. Pit Initiation at Single Sulfide Inclusions in Stainless Steel I. Electrochemical Microcell Measurements. J. Electrochem. Soc. 2002, 149, B272–B279. [Google Scholar] [CrossRef]
- Lai, Z.; Zou, Y.; Zhao, Z.; Huang, F.; Liu, P.; Lai, T.; Jin, Y. An Automated Test Platform for High-Throughput Micro-Electrochemical Characterization of Metallic Materials and Its Application on a Fe–Cr–Ni Combinatorial Materials Chip. J. Electrochem. Soc. 2021, 168, 091501. [Google Scholar] [CrossRef]
- Böhni, H.; Suter, T.; Schreyer, A. Micro- and nanotechniques to study localized corrosion. Electrochim. Acta 1995, 40, 1361–1368. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, M.; Wang, X.; Wan, W.; Wang, Y. Behavior of Dual-Phase (MnO-SiO2-Al2O3) + (SiO2) Inclusions in Saw Wire Steels During Hot Rolling and Cold Drawing. Metall. Mater. Trans. B 2019, 51, 95–101. [Google Scholar] [CrossRef]
- Li, S.; Zhang, L.; Ren, Y.; Fang, W.; Yang, W.; Shao, S.; Yang, J.; Mao, W. Transient Behavior of Inclusions during Reoxidation of Si-killed Stainless Steels in Continuous Casting Tundish. ISIJ Int. 2016, 56, 584–593. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Xu, J.; Li, G.; Zhu, C. Influences of deoxidation and VOD slag on the behavior of inclusions in Fe–21Cr ferrite stainless steel. J. Mater. Res. Technol. 2021, 15, 1949–1958. [Google Scholar] [CrossRef]
- Eo, D.-R.; Park, S.-H.; Cho, J.-W. Inclusion evolution in additive manufactured 316L stainless steel by laser metal deposition process. Mater. Des. 2018, 155, 212–219. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, L.; Fang, W.; Shao, S.; Yang, J.; Mao, W. Effect of Slag Composition on Inclusions in Si-Deoxidized 18Cr-8Ni Stainless Steels. Metall. Mater. Trans. B 2015, 47, 1024–1034. [Google Scholar] [CrossRef]
- Ehara, Y.; Yokoyama, S.; Kawakami, M. Control of formation of spinel inclusion in type 304 stainless steel by slag composition. Tetsu-to-Hagane 2007, 93, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Liu, C.; Qiu, J.; Li, X.; Jiang, M. Effect of Ti Content on the Characteristics of Inclusions in Al–Ti–Ca Complex Deoxidized Steel. ISIJ Int. 2017, 57, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zong, N. Effects of Al-Mg alloy treatment on behavior and size of inclusions in SUH 409L stainless steel. Metall. Res. Technol. 2017, 115, 111. [Google Scholar] [CrossRef]
- Lai, Z.; Bi, P.; Wen, L.; Xue, Y.; Jin, Y. Local electrochemical properties of fusion boundary region in SA508-309L/308L overlay welded joint. Corros. Sci. 2019, 155, 75–85. [Google Scholar] [CrossRef]
- Jin, Y.; Lai, Z.; Bi, P.; Yan, S.; Wen, L.; Wang, Y.; Pan, J.; Leygraf, C. Combining lithography and capillary techniques for local electrochemical property measurements. Electrochem. Commun. 2018, 87, 53–57. [Google Scholar] [CrossRef]
- Li, D.; Huang, F.; Lei, X.; Jin, Y. Localized corrosion of 304 stainless steel triggered by embedded MnS. Corros. Sci. 2023, 211, 110860. [Google Scholar] [CrossRef]
- Nishimoto, M.; Muto, I.; Sugawara, Y.; Hara, N. Morphological Characteristics of Trenching around MnS Inclusions in Type 316 Stainless Steel: The Role of Molybdenum in Pitting Corrosion Resistance. J. Electrochem. Soc. 2019, 166, C3081–C3089. [Google Scholar] [CrossRef]
- Webb, E.G.; Alkire, R.C. Pit Initiation at Single Sulfide Inclusions in Stainless Steel II. Detection of Local pH, Sulfide, and Thiosulfate. J. Electrochem. Soc. 2002, 149, B280–B285. [Google Scholar] [CrossRef]
- Webb, E.G.; Alkire, R.C. Pit Initiation at Single Sulfide Inclusions in Stainless Steel III. Mathematical Model. J. Electrochem. Soc. 2002, 149, B286–B295. [Google Scholar] [CrossRef]
- Pistorius, P.C.; Burstein, G.T. Aspects of the effects of electrolyte composition on the occurrence of metastable pitting on stainless steel. Corros. Sci. 1994, 36, 525–538. [Google Scholar] [CrossRef]
- Mankowski, J.; Szklarska-Smialowsk, Z. Studies on accumulation of chloride ions in pits growing during anodic polarization. Corros. Sci. 1975, 15, 493–501. [Google Scholar] [CrossRef]
- Dhandayuthapani, T.; Sivakumar, R.; Sanjeeviraja, C.; Gopalakrishnan, C.; Arumugam, S. Microstructure, optical and magnetic properties of micro-crystalline γ-MnS film prepared by chemical bath deposition method. Mater. Sci. Semicond. Process. 2017, 72, 67–71. [Google Scholar] [CrossRef]
- Shi, K.; Liu, B.; Wu, Y.; Liang, Z.; Wang, X.; Su, L.; Wang, Y.; Zhang, L.; Yang, G.; Zhang, Y.; et al. In-situ observation of the formation of fibrous sulfur under high pressure. J. Phys. Chem. C 2019, 123, 14696–14700. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, K.; Ma, H.; Dong, P. Adsorption Characteristics between Ti Atoms of TiO2(100) and Corrosive Species of CO2-H2S-Cl− System in Oil and Gas Fields. Materials 2023, 16, 3129. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, B.; Xu, B.; Yang, B. Ambient-stable polyethyleneimine functionalized Ti3C2Tx nanohybrid corrosion inhibitor for copper in alkaline electrolyte. Mater. Lett. 2023, 337, 133979. [Google Scholar] [CrossRef]
- Liu, Z.; Fan, B.; Zhao, J.; Yang, B.; Zheng, X. Benzothiazole derivatives-based supramolecular assemblies as efficient corrosion inhibitors for copper in artificial seawater: Formation, interfacial release and protective mechanisms. Corros. Sci. 2023, 212, 110957. [Google Scholar] [CrossRef]
Element | C | Si | Mn | P | S | Ni | Cr | Ti | Al | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Re-sulfurized SS304 | 0.073 | 0.72 | 2.81 | 0.022 | 0.043 | 8.17 | 18.1 | 0.011 | 0.013 | balance |
Matrix | MnS | Oxy–Sulfide | |
---|---|---|---|
Ecorr | −302.7 mV | −311.2 mV | −290.7 mV |
icorr | 5.689 pA | 6.731 pA | 4.282 pA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Zhi, H.; Lai, Z.; Jin, Y. Localized Corrosion of Stainless Steel Triggered by Typical Inclusions in NaCl Solution: Oxy-Sulfide and MnS. Materials 2023, 16, 4323. https://doi.org/10.3390/ma16124323
Li D, Zhi H, Lai Z, Jin Y. Localized Corrosion of Stainless Steel Triggered by Typical Inclusions in NaCl Solution: Oxy-Sulfide and MnS. Materials. 2023; 16(12):4323. https://doi.org/10.3390/ma16124323
Chicago/Turabian StyleLi, Dan, Hui Zhi, Zhaogui Lai, and Ying Jin. 2023. "Localized Corrosion of Stainless Steel Triggered by Typical Inclusions in NaCl Solution: Oxy-Sulfide and MnS" Materials 16, no. 12: 4323. https://doi.org/10.3390/ma16124323
APA StyleLi, D., Zhi, H., Lai, Z., & Jin, Y. (2023). Localized Corrosion of Stainless Steel Triggered by Typical Inclusions in NaCl Solution: Oxy-Sulfide and MnS. Materials, 16(12), 4323. https://doi.org/10.3390/ma16124323