Ultra-Precision Manufacturing Technology for Difficult-to-Machine Materials
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Tao, H.; Zhao, D.; Lu, X. An Investigation on the Total Thickness Variation Control and Optimization in the Wafer Backside Grinding Process. Materials 2022, 15, 4230. [Google Scholar] [CrossRef] [PubMed]
- Groeb, M.; Hageluken, L.; Groeb, J.; Ensinger, W. Experimental Analysis of Ductile Cutting Regime in Face Milling of Sintered Silicon Carbide. Materials 2022, 15, 2409. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Cheng, J.; Yang, D.; Zhao, L.; Chen, M.; Wang, J.; Liu, Q.; Ding, W.; Chen, G. Effect of Pre-Existing Micro-Defects on Cutting Force and Machined Surface Quality Involved in the Ball-End Milling Repairing of Flawed KDP Crystal Surfaces. Materials 2022, 15, 7407. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Cheng, J.; Liao, Z.; Liu, M.; Chen, M.; Zhao, L.; Lei, H.; Ding, W. Fractal Analysis on Machined Surface Morphologies of Soft-Brittle KDP Crystals Processed by Micro Ball-End Milling. Materials 2023, 16, 1782. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Wu, Y.; Chen, W.; Jia, Y.; Wang, B. In-Situ Measurement and Slow-Tool-Servo Compensation Method of Roundness Error of a Precision Mandrel. Materials 2022, 15, 8037. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Yuan, G.; Zhang, H.; Ding, Y.; Cheng, K. The Stability of Spiral-Grooved Air Journal Bearings in Ultrahigh Speeds. Materials 2022, 15, 1759. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Yuan, G.; Zhang, H.; Ding, Y.; Cheng, K. Non-Linear Dynamic Analysis on Hybrid Air Bearing-Rotor System under Ultra-High Speed Condition. Materials 2022, 15, 675. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, S.; Shao, Z. Analytical Compliance Equations of Generalized Elliptical-Arc-Beam Spherical Flexure Hinges for 3D Elliptical Vibration-Assisted Cutting Mechanisms. Materials 2021, 14, 5928. [Google Scholar] [CrossRef] [PubMed]
- Rajcic, B.; Sibalija, T.; Nikolic, V.; Cekada, M.; Savovic, J.; Petronic, S.; Milovanovic, D. Structural and Functional Picosecond Laser Modification of the Nimonic 263 Superalloy in Different Environmental Conditions and Optimization of the Irradiation Process. Materials 2023, 16, 1021. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Fang, X.; Dong, X.; Mei, X.; Xu, K.; Fan, Z.; Sun, Z.; Wang, W. Fabrication of PCD Skiving Cutter by UV Nanosecond Laser. Materials 2021, 14, 4027. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, R.; Shah, Y.; Khanna, S.; Patel, V.K.; Vora, J.; Pimenov, D.Y.; Giasin, K. Experimental Investigations and Effect of Nano-Powder-Mixed EDM Variables on Performance Measures of Nitinol SMA. Materials 2022, 15, 7392. [Google Scholar] [CrossRef]
- Heng, L.; Kim, J.S.; Song, J.H.; Mun, S.D. A Review on Surface Finishing Techniques for Difficult-to-Machine Ceramics by Non-Conventional Finishing Processes. Materials 2022, 15, 1227. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Gao, Q.; Lu, L.; Zhang, P. A Process Parameter Design Method for Improving the Filament Diameter Accuracy of Extrusion 3D Printing. Materials 2022, 15, 2454. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.; Zhao, X.; Liu, Q.; Guo, X.; Lin, F.; Yang, L.; Sun, T. Investigation of Surface Integrity of Selective Laser Melting Additively Manufactured AlSi10Mg Alloy under Ultrasonic Elliptical Vibration-Assisted Ultra-Precision Cutting. Materials 2022, 15, 8910. [Google Scholar] [CrossRef] [PubMed]
- Sommer, D.; Pape, D.; Esen, C.; Hellmann, R. Tool Wear and Milling Characteristics for Hybrid Additive Manufacturing Combining Laser Powder Bed Fusion and In Situ High-Speed Milling. Materials 2022, 15, 1236. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Xing, Y.; Dong, E.; Zhao, L.; Liu, H.; Chang, T.; Chen, M.; Wang, J.; Lu, J.; Wan, J. An Overview of Laser Metal Deposition for Cladding: Defect Formation Mechanisms, Defect Suppression Methods and Performance Improvements of Laser-Cladded Layers. Materials 2022, 15, 5522. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Chen, M.; Cheng, J.; Luo, X. Ultra-Precision Manufacturing Technology for Difficult-to-Machine Materials. Materials 2023, 16, 4322. https://doi.org/10.3390/ma16124322
Liu Q, Chen M, Cheng J, Luo X. Ultra-Precision Manufacturing Technology for Difficult-to-Machine Materials. Materials. 2023; 16(12):4322. https://doi.org/10.3390/ma16124322
Chicago/Turabian StyleLiu, Qi, Mingjun Chen, Jian Cheng, and Xichun Luo. 2023. "Ultra-Precision Manufacturing Technology for Difficult-to-Machine Materials" Materials 16, no. 12: 4322. https://doi.org/10.3390/ma16124322
APA StyleLiu, Q., Chen, M., Cheng, J., & Luo, X. (2023). Ultra-Precision Manufacturing Technology for Difficult-to-Machine Materials. Materials, 16(12), 4322. https://doi.org/10.3390/ma16124322