Fractal Analysis on Machined Surface Morphologies of Soft-Brittle KDP Crystals Processed by Micro Ball-End Milling
Abstract
:1. Introduction
2. Fractal Analysis Based on the Box-Counting Approach
3. Experimental Design and Details
4. Results and Discussions
4.1. Analysis of Micro-Milled KDP Surface Morphologies
4.2. 3D Fractal Analysis on the Machined Surface Morphologies
4.3. 2D Fractal Analysis on the Machined Surface Morphologies
4.3.1. Anisotropy Analysis of the Micro Ball-End Milled Surfaces
4.3.2. Fractal Dimension Analysis of Cross-Section Surface Contours
5. Conclusions
- (1)
- The 3D machined surfaces and their typical 2D cross-sectional contours were analyzed using the Box-counting method for calculating corresponding 3D and 2D fractal dimensions, respectively. The calculated fractal dimension of different micro-milled KDP surfaces was discussed comprehensively, combining the analysis of the surface quality and textures. It was found that there was a negative correlation between the 3D fractal dimension and surface roughness (Sa and Sq). This means that the worse the surface quality, the smaller the fractal dimension.
- (2)
- The circumstances 2D fractal dimension of cross-sectional surfaces has been approved to quantitively characterize the anisotropy of the micro ball-end milled surfaces, which could not be analyzed by surface roughness. If the 2D fractal dimension is distributed symmetrically, the surface contours are supposed to be generated by ductile-regime removal. While it is distributed asymmetrically, the surface contours should be occupied by brittle cracks and fractures and corresponding machining processes in brittle-regime. This phenomenon becomes more significant for the cross-sectional surface contours along the feed direction than those perpendicular to the feed direction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, M.; Ding, W.; Cheng, J.; Yang, H.; Liu, Q. Recent Advances in Laser-Induced Surface Damage of KH2PO4 Crystal. Appl. Sci. 2020, 10, 6642. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, M.; Liao, Z.; Feng, J.; Xu, D.; Cheng, J. On the improvement of the ductile removal ability of brittle KDP crystal via temperature effect. Ceram. Int. 2021, 47, 33127–33139. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, H.; Liu, Q.; Zhao, L.; Liu, Z.; Liu, H.; Wang, T.; Xiao, Y.; Hu, K.; Chen, M.; et al. Characterization of manufacturing-induced surface scratches and their effect on laser damage resistance performance of diamond fly-cut KDP crystal. Results Phys. 2019, 15, 102753. [Google Scholar] [CrossRef]
- Liu, Q.; Liao, Z.; Axinte, D. Temperature effect on the material removal mechanism of soft-brittle crystals at nano/micron scale. Int. J. Mach. Tools Manuf. 2020, 159, 103620. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, J.; Liu, Z.; Liu, Q.; Zhao, L.; Tan, C.; Wang, J.; Chen, M. Secondary peak of downstream light field modulation caused by Gaussian mitigation pits on the rear KDP surface. Opt. Express 2020, 28, 28479–28490. [Google Scholar] [CrossRef]
- Liu, Z.C.; Geng, F.; Li, Y.G.; Cheng, J.; Yang, H.; Zheng, Y.; Wang, J.; Xu, Q. Study of morphological feature and mechanism of potassium dihydrogen phosphate surface damage under a 351 nm nanosecond laser. Appl. Opt. 2018, 57, 10334–10341. [Google Scholar] [CrossRef]
- Tan, C.; Zhao, L.; Chen, M.; Cheng, J.; Yang, H.; Liu, Q.; Yin, Z.; Liao, W. Formation mechanism of surface morphology in the process of CO2 pulsed laser processing of fused silica optics. Opt. Laser Technol. 2021, 138, 106838. [Google Scholar] [CrossRef]
- Lawrence, W.H.; Raymond, M.B.; Walter, G.; Mary, A.N.; Eugene, E.D.; William, A.M.; Samuel, L.T.; Steven, R.S.; Pamela, K.W.; Michael Douglas, S.; et al. Methods for Mitigating Growth of Laser-Initiated Surface Damage on DKDP Optics at 351 nm. In Proceedings of the Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization, Boulder, CO, USA, 16–18 September 2002. [Google Scholar]
- Lei, H.; Cheng, J.; Yang, D.; Zhao, L.; Chen, M.; Wang, J.; Liu, Q.; Ding, W.; Chen, G. Effect of Pre-Existing Micro-Defects on Cutting Force and Machined Surface Quality Involved in the Ball-End Milling Repairing of Flawed KDP Crystal Surfaces. Materials 2022, 15, 7407. [Google Scholar] [CrossRef]
- Cheng, J.; Xiao, Y.; Liu, Q.; Yang, H.; Zhao, L.; Chen, M.; Tan, J.; Liao, W.; Chen, J.; Yuan, X. Effect of surface scallop tool marks generated in micro-milling repairing process on the optical performance of potassium dihydrogen phosphate crystal. Mater. Des. 2018, 157, 447–456. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, L.; Wu, Z. Effect of Anisotropy of Potassium Dihydrogen Phosphate Crystals on Its Deformation Mechanisms Subjected to Nanoindentation. ACS Appl Mater Interfaces 2021, 13, 41351–41360. [Google Scholar] [CrossRef]
- Borc, J.; Sangwal, K.; Pritula, I.; Dolzhenkova, E. Investigation of pop-in events and indentation size effect on the (001) and (100) faces of KDP crystals by nanoindentation deformation. Mater. Sci. Eng. A 2017, 708, 1–10. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, L. Characterization of mechanical properties and failure of potassium dihydrogen phosphate under mechanical stressing. Ceram. Int. 2021, 47, 15875–15882. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Zhou, G.; Wei, Z.; Zhang, L. Theoretical modelling of brittle-to-ductile transition load of KDP crystals on (001) plane during nanoindentation and nanoscratch tests. J. Mater. Res. Technol. 2020, 9, 14142–14157. [Google Scholar] [CrossRef]
- Li, C.; Piao, Y.; Hu, Y.; Wei, Z.; Li, L.; Zhang, F. Modelling and experimental investigation of temperature field during fly-cutting of KDP crystals. Int. J. Mech. Sci. 2021, 210, 106751. [Google Scholar] [CrossRef]
- La Monaca, A.; Murray, J.W.; Liao, Z.; Speidel, A.; Robles-Linares, J.A.; Axinte, D.A.; Hardy, M.C.; Clare, A.T. Surface integrity in metal machining—Part II: Functional performance. Int. J. Mach. Tools Manuf. 2021, 164, 103718. [Google Scholar] [CrossRef]
- Liao, Z.; La Monaca, A.; Murray, J.; Speidel, A.; Ushmaev, D.; Clare, A.; Axinte, D.; M’Saoubi, R. Surface integrity in metal machining—Part I: Fundamentals of surface characteristics and formation mechanisms. Int. J. Mach. Tools Manuf. 2021, 162, 103687. [Google Scholar] [CrossRef]
- La Monaca, A.; Axinte, D.A.; Liao, Z.; M’Saoubi, R.; Hardy, M.C. Towards understanding the thermal history of microstructural surface deformation when cutting a next generation powder metallurgy nickel-base superalloy. Int. J. Mach. Tools Manuf. 2021, 168, 103765. [Google Scholar] [CrossRef]
- Paul, G.; Carr, W.; Draggoo, V.; Hackel, R.; Mailhiot, C.; Norton, M. Surface Damage Growth Mitigation on KDP/DKDP Optics Using Single-Crystal Diamond Micro-Machining Ball End Mill Contouring. In Laser-Induced Damage in Optical Materials: 2006; SPIE: Bellingham, WA, USA, 2007. [Google Scholar]
- Liu, Q.; Cheng, J.; Liao, Z.; Yang, H.; Zhao, L.; Chen, M. Incident laser modulation by tool marks on micro-milled KDP crystal surface: Numerical simulation and experimental verification. Opt. Laser Technol. 2019, 119, 105610. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, J.; Liao, Z.; Luo, X.; Yang, Y.; Li, M.; Yang, H.; Tan, C.; Wang, G.; Ding, W.; et al. Research on the light intensity modulation and characterizing methods of surface texture on KDP optics generated in fly-cutting and micro ball-end milling processes. CIRP J. Manuf. Sci. Technol. 2023, 41, 30–43. [Google Scholar] [CrossRef]
- Zeng, Q.; Qin, Y.; Chang, W.; Luo, X. Correlating and evaluating the functionality-related properties with surface texture parameters and specific characteristics of machined components. Int. J. Mech. Sci. 2018, 149, 62–72. [Google Scholar] [CrossRef]
- Pan, Y.; Zhou, P.; Yan, Y.; Agrawal, A.; Wang, Y.; Guo, D.; Goel, S. New insights into the methods for predicting ground surface roughness in the age of digitalisation. Precis. Eng. 2021, 67, 393–418. [Google Scholar] [CrossRef]
- Haitjema, H. Uncertainty in measurement of surface topography. Surf. Topogr. Metrol. Prop. 2015, 3, 035004. [Google Scholar] [CrossRef]
- Podulka, P. Selection of Methods of Surface Texture Characterisation for Reduction of the Frequency-Based Errors in the Measurement and Data Analysis Processes. Sensors 2022, 22, 791. [Google Scholar] [CrossRef]
- Giusca, C.L.; Claverley, J.D.; Sun, W.; Leach, R.K.; Helmli, F.; Chavigner, M.P.J. Practical estimation of measurement noise and flatness deviation on focus variation microscopes. CIRP Ann. 2014, 63, 545–548. [Google Scholar] [CrossRef]
- Goodhand, M.N.; Walton, K.; Blunt, L.; Lung, H.W.; Miller, R.J.; Marsden, R. The Limitations of Using “Ra” to Describe Surface Roughness. J. Turbomach. 2016, 138, 101003. [Google Scholar] [CrossRef]
- Kuang, L.; Pang, Q.; Chen, M.; Ma, L.; Xu, Y. Research on influence of cutting parameters on frequency characteristics of KDP surface topography. Qiangjiguang Yu Lizishu/High Power Laser Part. Beams 2020, 32, 032005. [Google Scholar]
- Pang, Q.; Kuang, L.; Xu, Y. The influence of cutting parameters on micro-topography of frequency features extracted from the machined KH2PO4 surfaces. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 2020, 234, 1762–1770. [Google Scholar] [CrossRef]
- Chen, M.; Li, M.; Cheng, J.; Xiao, Y.; Pang, Q. Study on the optical performance and characterization method of texture on KH2PO4 surface processed by single point diamond turning. Appl. Surf. Sci. 2013, 279, 233–244. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Passoja, D.E.; Paullay, A.J. Fractal character of fracture surfaces of metals. Nature 1984, 308, 721–722. [Google Scholar] [CrossRef]
- Yadav, R.P.; Kumar, T.; Mittal, A.K.; Dwivedi, S.; Kanjilal, D. Fractal characterization of the silicon surfaces produced by ion beam irradiation of varying fluences. Appl. Surf. Sci. 2015, 347, 706–712. [Google Scholar] [CrossRef]
- Wen, T.; Cheong, K.H. The fractal dimension of complex networks: A review. Inf. Fusion 2021, 73, 87–102. [Google Scholar] [CrossRef]
- Nayak, S.R.; Mishra, J.; Palai, G. Analysing roughness of surface through fractal dimension: A review. Image Vis. Comput. 2019, 89, 21–34. [Google Scholar] [CrossRef]
- Wang, L.E.I.; Luo, R.; Zhang, W.E.I.; Jin, M.; Tang, S. Effects of Fineness and Content of Phosphorus Slag on Cement Hydration, Permeability, Pore Structure and Fractal Dimension of Concrete. Fractals 2021, 29. [Google Scholar] [CrossRef]
- Qu, D.; Wang, B.; Peng, Z. The influence of processing parameters on surface characteristics in micro-milling thin-walled slot on Elgiloy. Int. J. Adv. Manuf. Technol. 2017, 92, 2843–2852. [Google Scholar] [CrossRef]
- Zheng, W.; Zhou, M.; Zhou, L. Influence of process parameters on surface topography in ultrasonic vibration- assisted end grinding of SiCp/Al composites. Int. J. Adv. Manuf. Technol. 2017, 91, 2347–2358. [Google Scholar] [CrossRef]
- Chen, M.; Pang, Q.; Wang, J.; Cheng, K. Analysis of 3D microtopography in machined KDP crystal surfaces based on fractal and wavelet methods. Int. J. Mach. Tools Manuf. 2008, 48, 905–913. [Google Scholar] [CrossRef]
- Panigrahy, C.; Seal, A.; Mahato, N.K.; Bhattacharjee, D. Differential box counting methods for estimating fractal dimension of gray-scale images: A survey. Chaos Solitons Fractals 2019, 126, 178–202. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, J.; Chen, M.; Wang, J.; Liu, Z.; An, C.; Zheng, Y.; Hu, K.; Liu, Q. Optimization of morphological parameters for mitigation pits on rear KDP surface: Experiments and numerical modeling. Opt Express 2017, 25, 18332–18345. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Cheng, J.; Liu, Z.; Liu, Q.; Zhao, L.; Tan, C.; Wang, J.; Chen, M. Model Development for Nanosecond Laser-Induced Damage Caused by Manufacturing-Induced Defects on Potassium Dihydrogen Phosphate Crystals. ACS Omega 2020, 5, 19884–19895. [Google Scholar] [CrossRef]
- Zhao, L.; Yin, Z.; Zhang, D.; Cheng, J.; Yang, H.; Tan, C.; Liu, Q.; Chen, M.; Yuan, X. A Novel Subpixel Size Calibration Method for the Size Detection of Microtarget on Large-Aperture Optics Surface. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, J.; Xiao, Y.; Yang, H.; Chen, M. Effect of milling modes on surface integrity of KDP crystal processed by micro ball-end milling. Procedia CIRP 2018, 71, 260–266. [Google Scholar] [CrossRef]
- Zhao, L.; Cheng, J.; Yin, Z.; Yang, H.; Chen, M.; Yuan, X. Research on precision automatic tool setting technology for KDP crystal surface damage mitigation based on machine vision. J. Manuf. Process. 2021, 64, 750–757. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, J.; Xiao, Y.; Chen, M.; Yang, H.; Wang, J. Effect of tool inclination on surface quality of KDP crystal processed by micro ball-end milling. Int. J. Adv. Manuf. Technol. 2018, 99, 2777–2788. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, J.; Yang, H.; Xu, Y.; Zhao, L.; Tan, C.; Chen, M. Modeling of residual tool mark formation and its influence on the optical performance of KH2PO4 optics repaired by micro-milling. Opt. Mater. Express 2019, 9, 3789. [Google Scholar] [CrossRef]
- Chen, N.; Chen, M.; Wu, C.; Pei, X. Cutting surface quality analysis in micro ball end-milling of KDP crystal considering size effect and minimum undeformed chip thickness. Precis. Eng. 2017, 50, 410–420. [Google Scholar] [CrossRef]
- Chen, N.; Chen, M.; Wu, C.; Pei, X.; Qian, J.; Reynaerts, D. Research in minimum undeformed chip thickness and size effect in micro end-milling of potassium dihydrogen phosphate crystal. Int. J. Mech. Sci. 2017, 134, 387–398. [Google Scholar] [CrossRef]
- Fang, F.; Lai, M.; Wang, J.; Luo, X.; Yan, J.; Yan, Y. Nanometric cutting: Mechanisms, practices and future perspectives. Int. J. Mach. Tools Manuf. 2022, 178, 103905. [Google Scholar] [CrossRef]
- Axinte, D.; Huang, H.; Yan, J.; Liao, Z. What micro-mechanical testing can reveal about machining processes. Int. J. Mach. Tools Manuf. 2022, 183, 103964. [Google Scholar] [CrossRef]
- Liu, Q.; Liao, Z.; Cheng, J.; Xu, D.; Chen, M. Mechanism of chip formation and surface-defects in orthogonal cutting of soft-brittle potassium dihydrogen phosphate crystals. Mater. Des. 2021, 198, 109327. [Google Scholar] [CrossRef]
- Chen, W.; Xie, W.; Huo, D.; Yang, K. A novel 3D surface generation model for micro milling based on homogeneous matrix transformation and dynamic regenerative effect. Int. J. Mech. Sci. 2018, 144, 146–157. [Google Scholar] [CrossRef] [Green Version]
Ex. No | Sa | Sq | FD | R | p-Value |
---|---|---|---|---|---|
1 | 195 | 240 | 2.528 | −0.8985 (Sa vs. FD) | 0.0149 (Sa vs. FD) |
2 | 225 | 270 | 2.473 | ||
3 | 254 | 330 | 2.424 | ||
4 | 229 | 295 | 2.351 | −0.9117 (Sq vs. FD) | 0.0114 (Sq vs. FD) |
5 | 272 | 339 | 2.294 | ||
6 | 345 | 412 | 2.215 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Cheng, J.; Liao, Z.; Liu, M.; Chen, M.; Zhao, L.; Lei, H.; Ding, W. Fractal Analysis on Machined Surface Morphologies of Soft-Brittle KDP Crystals Processed by Micro Ball-End Milling. Materials 2023, 16, 1782. https://doi.org/10.3390/ma16051782
Liu Q, Cheng J, Liao Z, Liu M, Chen M, Zhao L, Lei H, Ding W. Fractal Analysis on Machined Surface Morphologies of Soft-Brittle KDP Crystals Processed by Micro Ball-End Milling. Materials. 2023; 16(5):1782. https://doi.org/10.3390/ma16051782
Chicago/Turabian StyleLiu, Qi, Jian Cheng, Zhirong Liao, Mingyu Liu, Mingjun Chen, Linjie Zhao, Hongqin Lei, and Wenyu Ding. 2023. "Fractal Analysis on Machined Surface Morphologies of Soft-Brittle KDP Crystals Processed by Micro Ball-End Milling" Materials 16, no. 5: 1782. https://doi.org/10.3390/ma16051782
APA StyleLiu, Q., Cheng, J., Liao, Z., Liu, M., Chen, M., Zhao, L., Lei, H., & Ding, W. (2023). Fractal Analysis on Machined Surface Morphologies of Soft-Brittle KDP Crystals Processed by Micro Ball-End Milling. Materials, 16(5), 1782. https://doi.org/10.3390/ma16051782