In Situ Synchrotron XRD Characterization of Piezoelectric Al1−xScxN Thin Films for MEMS Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synchrotron XRD Measurement System Setup
2.2. High Overtone Bulk Acoustic Resonators Fabrication
3. Results and Discussion
3.1. d33 Measurement by Synchrotron XRD Method
3.2. d33 Measurement by HBAR Method
3.3. d33 Measurement by PM300 Method
3.4. d33 Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruby, R. A Snapshot in Time: The Future in Filters for Cell Phones. IEEE Microw. Mag. 2015, 16, 46–59. [Google Scholar] [CrossRef]
- Weigel, R.; Morgan, D.P.; Owens, J.M.; Ballato, A.; Lakin, K.M.; Hashimoto, K.; Ruppel, C.C.W. Microwave acoustic materials, devices, and applications. IEEE Trans. Microw. Theory Tech. 2002, 50, 738–749. [Google Scholar] [CrossRef]
- Aigner, R. SAW and BAW technologies for RF filter applications: A review of the relative strengths and weaknesses. In Proceedings of the 2008 IEEE Ultrasonics Symposium, Beijing, China, 2–5 November 2008; pp. 582–589. [Google Scholar] [CrossRef]
- Ruby, R.C.; Bradley, P.; Oshmyansky, Y.; Chien, A.; Larson, J.D. Thin film bulk wave acoustic resonators (FBAR) for wireless applications. In Proceedings of the 2001 IEEE Ultrasonics Symposium, Atlanta, GA, USA, 7–10 October 2001; pp. 813–821. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Y.; Zhang, Y.; Tovstopyat, A.; Liu, S.; Sun, C. Materials, Design, and Characteristics of Bulk Acoustic Wave Resonator: A Review. Micromachines 2020, 11, 630. [Google Scholar] [CrossRef]
- Aigner, R.; Fattinger, G.; Schaefer, M.; Karnati, K.; Rothemund, R.; Dumont, F. BAW Filters for 5G Bands. In Proceedings of the 2018 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 1–5 December 2018; pp. 14.15.11–14.15.14. [Google Scholar] [CrossRef]
- Akiyama, M.; Kamohara, T.; Kano, K.; Teshigahara, A.; Takeuchi, Y.; Kawahara, N. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 2009, 21, 593–596. [Google Scholar] [CrossRef]
- Akiyama, M.; Kano, K.; Teshigahara, A. Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl. Phys. Lett. 2009, 95, 162107. [Google Scholar] [CrossRef]
- Akiyama, M.; Umeda, K.; Honda, A.; Nagase, T. Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films. Appl. Phys. Lett. 2013, 102, 021915. [Google Scholar] [CrossRef]
- Mayrhofer, P.M.; Riedl, H.; Euchner, H.; Stöger-Pollach, M.; Mayrhofer, P.H.; Bittner, A.; Schmid, U. Microstructure and piezoelectric response of YxAl1−xN thin films. Acta Mater. 2015, 100, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zeng, F.; Tang, G.; Pan, F. Enhancement of piezoelectric response of diluted Ta doped AlN. Appl. Surf. Sci. 2013, 270, 225–230. [Google Scholar] [CrossRef]
- Tasnadi, F.; Alling, B.; Hoglund, C.; Wingqvist, G.; Birch, J.; Hultman, L.; Abrikosov, I.A. Origin of the anomalous piezoelectric response in wurtzite ScxAl1−xN alloys. Phys. Rev. Lett. 2010, 104, 137601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.L.; Park, M.; Mertin, S.; Pensala, T.; Ayazi, F.; Ansari, A. A Film Bulk Acoustic Resonator Based on Ferroelectric Aluminum Scandium Nitride Films. J. Microelectromech. Syst. 2020, 29, 741–747. [Google Scholar] [CrossRef]
- Ansari, A. Single Crystalline Scandium Aluminum Nitride: An Emerging Material for 5G Acoustic Filters. In Proceedings of the 2019 IEEE MTT-S International Wireless Symposium (IWS), Guangzhou, China, 19–22 May 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Leone, S.; Ligl, J.; Manz, C.; Kirste, L.; Fuchs, T.; Menner, H.; Prescher, M.; Wiegert, J.; Žukauskaitė, A.; Quay, R.; et al. Metal-Organic Chemical Vapor Deposition of Aluminum Scandium Nitride. Phys. Status. Solidi. Rapid. Res. Lett. 2019, 14, 1900535. [Google Scholar] [CrossRef] [Green Version]
- Momida, H.; Teshigahara, A.; Oguchi, T. Strong enhancement of piezoelectric constants in ScxAl1−xN: First-principles calculations. AIP Adv. 2016, 6, 065006. [Google Scholar] [CrossRef] [Green Version]
- Mertin, S.; Pashchenko, V.; Parsapour, F.; Sandu, C.S.; Heinz, B.; Rattunde, O.; Christmann, G.; Dubois, M.-A.; Muralt, P. Enhanced piezoelectric properties of c-axis textured aluminium scandium nitride thin films with high scandium content: Influence of intrinsic stress and sputtering parameters. In Proceedings of the 2017 IEEE International Ultrasonics Symposium, Washington, DC, USA, 6–9 September 2017; p. 1. [Google Scholar] [CrossRef]
- Sandu, C.S.; Parsapour, F.; Mertin, S.; Pashchenko, V.; Matloub, R.; LaGrange, T.; Heinz, B.; Muralt, P. Abnormal Grain Growth in AlScN Thin Films Induced by Complexion Formation at Crystallite Interfaces. Phys. Status Solidi A 2019, 216, 1800569. [Google Scholar] [CrossRef]
- Mertin, S.; Heinz, B.; Rattunde, O.; Christmann, G.; Dubois, M.A.; Nicolay, S.; Muralt, P. Piezoelectric and structural properties of c-axis textured aluminium scandium nitride thin films up to high scandium content. Surf. Coat. Tech. 2018, 343, 2–6. [Google Scholar] [CrossRef]
- Shetty, S.; Yang, J.I.; Stitt, J.; Trolier-McKinstry, S. Quantitative and high spatial resolution d33 measurement of piezoelectric bulk and thin films. J. Appl. Phys. 2015, 118, 174104. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, B.J.; Kim, D.J.; Kingon, A.I.; Nemanich, R.J. Measurement of the Effective Piezoelectric Constant of Nitride Thin Films and Heterostructures Using Scanning Force Microscopy. Mat. Res. Soc. Symp. Proc. 2011, 693, 798–803. [Google Scholar] [CrossRef]
- Moreira, M.; Bjurstrom, J.; Katardjev, I.; Yantchev, V. Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications. Vacuum 2011, 86, 23–26. [Google Scholar] [CrossRef]
- Sivaramakrishnan, S.; Mardilovich, P.; Schmitz-Kempen, T.; Tiedke, S. Concurrent wafer-level measurement of longitudinal and transverse effective piezoelectric coefficients (d33,f and e31,f) by double beam laser interferometry. J. Appl. Phys. 2018, 123, 014103. [Google Scholar] [CrossRef]
- Bu, G.; Ciplys, D.; Shur, M.; Schowalter, L.J.; Schujman, S.; Gaska, R. Electromechanical coupling coefficient for surface acoustic waves in single-crystal bulk aluminum nitride. Appl. Phys. Lett. 2004, 84, 4611–4613. [Google Scholar] [CrossRef]
- Mcneil, L.E.; Grimsditch, M.; French, R.H. Vibrational Spectroscopy of Aluminum Nitride. J. Am. Ceram. Soc. 1993, 76, 1132–1136. [Google Scholar] [CrossRef]
- Tsubouchi, K.; Sugai, K.; Mikoshiba, N. AlN Material Constants Evaluation and SAW Properties on AlN/Al2O3 and AlN/Si. In Proceedings of the 1981 Ultrasonics Symposium, Chicago, IL, USA, 14–16 October 1981; pp. 375–380. [Google Scholar] [CrossRef]
- Tazaki, R.; Fu, D.; Itoh, M.; Daimon, M.; Koshihara, S.Y. Lattice distortion under an electric field in BaTiO3 piezoelectric single crystal. J. Phys. Condens. Matter 2009, 21, 215903. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Maruyama, K.; Kanamitsu, Y.; Nishioka, S.; Ozaki, T.; Umegaki, T.; Hida, H.; Kanno, I. Crystallographic contributions to piezoelectric properties in PZT thin films. Sci. Rep. 2019, 9, 7309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biger, H.; Degnah, A.; Salur, E.; Svkliyildiz, L.; Tsakalakos, T.; Akdogan, E.K. Multicycle flash sintering of cubic Y2O3-stabilized ZrO2: An in situ energy dispersive synchrotron x-ray diffraction study with high temporal resolution. Mater. Today. Commun. 2022, 33, 104272. [Google Scholar] [CrossRef]
- ŞAvkliyildiz, İ. In-Situ Strain Measurement on Al7075 Plate by Using High Energy Synchrotron Light Source. Eur. J. Lipid. Sci. Tech. 2021, 23, 435–439. [Google Scholar] [CrossRef]
- Shiomi, H.; Ueda, A.; Tohei, T.; Imai, Y.; Hamachi, T.; Sumitani, K.; Kimura, S.; Ando, Y.; Hashizume, T.; Sakai, A. Analysis of inverse-piezoelectric-effect-induced lattice deformation in AlGaN/GaN high-electron-mobility transistors by time-resolved synchrotron radiation nanobeam X-ray diffraction. Appl. Phys. Express 2021, 14, 095502. [Google Scholar] [CrossRef]
- Soutome, T.; Yanagitani, T. A method to estimate kt2 of piezoelectric films from the change of lattice strain by XRD without removing substrate. In Proceedings of the 2019 IEEE International Ultrasonics Symposium, Glasgow, UK, 6–9 October 2019; pp. 301–304. [Google Scholar] [CrossRef]
- ANSI/IEEE Std 176-1987; IEEE Standard on Piezoelectricity. IEEE: New York, NY, USA, 1988. [CrossRef]
- Mason, W.P.; Baerwald, H. Piezoelectric Crystals and Their Applications to Ultrasonics. Phys. Today 1951, 4, 23–24. [Google Scholar] [CrossRef]
- Berlincourt, D.; Krueger, H.H.A. Domain Processes in Lead Titanate Zirconate and Barium Titanate Ceramics. J. Appl. Phys. 1959, 30, 1804–1810. [Google Scholar] [CrossRef]
- Stewart, M.; Cain, M.G. Direct Piezoelectric Measurement: The Berlincourt Method. In Characterisation of Ferroelectric Bulk Materials and Thin Films; Springer Series in Measurement Science and Technology: New York, NY, USA, 2014; pp. 37–64. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Lefki, K.; Dormans, G.J.M. Measurement of Piezoelectric Coefficients of Ferroelectric Thin-Films. J. Appl. Phys. 1994, 76, 1764–1767. [Google Scholar] [CrossRef]
- Guo, Q.; Cao, G.Z.; Shen, I.Y. Measurements of Piezoelectric Coefficient d33 of Lead Zirconate Titanate Thin Films Using a Mini Force Hammer. J. Vib. Acoust. 2013, 135, 011003. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, Y.; Wang, L.; Liu, Y.; Chen, H.; Wu, Z. Process Control Monitor (PCM) for Simultaneous Determination of the Piezoelectric Coefficients d31 and d33 of AlN and AlScN Thin Films. Micromachines 2022, 13, 581. [Google Scholar] [CrossRef] [PubMed]
- Matloub, R.; Hadad, M.; Mazzalai, A.; Chidambaram, N.; Moulard, G.; Sandu, C.S.; Metzger, T.; Muralt, P. Piezoelectric Al1−xScxN thin films: A semiconductor compatible solution for mechanical energy harvesting and sensors. Appl. Phys. Lett. 2013, 102, 152903. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, E.; Alvarez, S.; Alemany, P. Electronic structure and properties of AlN. Phys. Rev. B Condens. Matter 1994, 49, 7115–7123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, A.F. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. J. Appl. Phys. 1997, 82, 2833–2839. [Google Scholar] [CrossRef]
- Tsubouchi, K.; Mikoshiba, N. Zero-Temperature-Coefficient Saw Devices on Aln Epitaxial-Films. IEEE Trans. Sonics Ultrason. 1985, 32, 634–644. [Google Scholar] [CrossRef]
- Mayrhofer, P.M.; Euchner, H.; Bittner, A.; Schmid, U. Circular test structure for the determination of piezoelectric constants of ScxAl1−xN thin films applying Laser Doppler Vibrometry and FEM simulations. Sens. Actuator. A Phys. 2015, 222, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Zhang, Q.; Corkovic, S.; Dorey, R.; Whatmore, R.W. Comparative measurements of piezoelectric coefficient of PZT films by Berlincourt, interferometer, and vibrometer methods. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2006, 53, 2287–2293. [Google Scholar] [CrossRef]
- Fialka, J.; Benes, P. Comparison of methods of piezoelectric coefficient measurement. In Proceedings of the 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 13–16 May 2012; pp. 37–42. [Google Scholar] [CrossRef]
Material | Method | Measured d33 (pC/N) | Corrected d33 (pC/N) | Theoretical Calculated d33 (pC/N) |
---|---|---|---|---|
AlN | Synchrotron XRD | 3.54 | 4.76 | 5.38 |
PM300 | 6.33 | 4.29 | ||
HBAR | 4.22 | 5.43 | ||
Al0.9Sc0.1N | Synchrotron XRD | 5.58 | 7.79 | 7.89 |
PM300 | 8.96 | 7.03 | ||
HBAR | 6.04 | 8.25 |
Material | d33 (pC/N) | Reference | Material | d33 (pC/N) | Reference |
---|---|---|---|---|---|
AlN | 4.53 | [24] | Al0.9Sc0.1N | 7.5 | [8] |
AlN | 4.76 | Our work | Al0.9Sc0.1N | 7.79 | Our work |
AlN | 4.9 | [25] | Al0.88Sc0.12N | 7.9 | [43] |
AlN * | 5.0 | [44] | Al0.85Sc0.15N | 7.92 | [22] |
AlN | 5.1 | [26] | Al0.83Sc0.17N | 9.5 | [43] |
AlN * | 5.1 | [45] | Al0.8Sc0.2N | 11.5 | [8] |
AlN | 5.53 | [46] | Al0.75Sc0.25N | 13.2 | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Zhu, L.; Chen, L.; Yang, Y.; Yu, X.; Li, X.; Mu, Z.; Yu, W. In Situ Synchrotron XRD Characterization of Piezoelectric Al1−xScxN Thin Films for MEMS Applications. Materials 2023, 16, 1781. https://doi.org/10.3390/ma16051781
Jiang W, Zhu L, Chen L, Yang Y, Yu X, Li X, Mu Z, Yu W. In Situ Synchrotron XRD Characterization of Piezoelectric Al1−xScxN Thin Films for MEMS Applications. Materials. 2023; 16(5):1781. https://doi.org/10.3390/ma16051781
Chicago/Turabian StyleJiang, Wenzheng, Lei Zhu, Lingli Chen, Yumeng Yang, Xi Yu, Xiaolong Li, Zhiqiang Mu, and Wenjie Yu. 2023. "In Situ Synchrotron XRD Characterization of Piezoelectric Al1−xScxN Thin Films for MEMS Applications" Materials 16, no. 5: 1781. https://doi.org/10.3390/ma16051781
APA StyleJiang, W., Zhu, L., Chen, L., Yang, Y., Yu, X., Li, X., Mu, Z., & Yu, W. (2023). In Situ Synchrotron XRD Characterization of Piezoelectric Al1−xScxN Thin Films for MEMS Applications. Materials, 16(5), 1781. https://doi.org/10.3390/ma16051781