Effect of Different Expansive Agents on the Deformation Properties of Core Concrete in a Steel Tube with a Harsh Temperature History
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiments
2.2.1. Mix Design of Concrete
2.2.2. Test of Deformation Performance of C60 Concrete under Variable Temperature Conditions
2.2.3. Hydration Heat
2.2.4. Measurement of Hydration Degree of MgO Expansion Agent under Variable Temperature Conditions
2.2.5. SEM Analyses of Cement Paste Mixed with Expansive Agent
3. Results and Discussion
3.1. Expansion Properties of CaO Expansive Agents in C60 Concrete under Variable Temperature Conditions
3.2. Expansion Properties of MgO Expansive Agents in C60 Concrete under Variable Temperature Conditions
3.3. Expansion Properties of Expansive Agents of 6% CaO and 2% MgO with Different Active Times in C60 Concrete under Variable Temperature Conditions
3.4. Expansion Properties of Expansive Agents of 6% CaO and 65 s MgO in Different Proportions in C60 Concrete under Variable Temperature Conditions
3.5. Isothermal Calorimetry of Different Expansive Agents
3.6. Hydration Degree of MgO Expansive Agent in Cement Paste under Variable Temperature Conditions
3.7. SEM Analyses of Cement Paste Mixed with Expansion Agent
3.8. Discussion and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, B.; Liu, J. Review of construction and technology development of arch bridges in the world. J. Traffic Transp. Eng. 2022, 1, 27–41. (In Chinese) [Google Scholar]
- Younas, S.; Hamed, E.; Uy, B. Effect of creep on the strength of high strength concrete-filled steel tubes. J. Constr. Steel Res. 2023, 201, 107719. [Google Scholar] [CrossRef]
- Han, X.; Han, B.; Xie, H.; Yan, W.; Yu, J.; He, Y.; Yan, L. Seismic stability analysis of the large-span concrete-filled steel tube arch bridge considering the long-term effects. Eng. Struct. 2022, 268, 114744. [Google Scholar] [CrossRef]
- Patel, V.I. Analysis of uniaxially loaded short round-ended concrete-filled steel tubular beam-columns. Eng. Struct. 2020, 205, 110098. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, J. Concrete-Filled Steel Tube Arch Bridges in China. Engineering 2018, 4, 143–155. [Google Scholar] [CrossRef]
- Yang, K.; Gao, L.; Zheng, K.; Shi, J. Mechanical behavior of a novel steel-concrete joint for long-span arch bridges—Application to Yachi River Bridge. Eng. Struct. 2022, 265, 114492. [Google Scholar] [CrossRef]
- Chen, B.; Wang, T. Overview of concrete filled steel tube arch bridges in China. Pract. Period. Struct. Des. Constr. 2019, 14, 70–80. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Li, D. Mechanical behavior of concrete-filled steel tubular columns with initial concrete imperfection under long-term sustained load. J. Build. Struct. 2020, 10, 112–120. (In Chinese) [Google Scholar]
- Liao, F.; Han, H.; Wang, Y. Cyclic behaviour of concrete-filled steel tubular (CFST) members with circumferential gap under combined compression-bending-torsion load. China Civ. Eng. J. 2019, 7, 57–80. [Google Scholar]
- Wang, Z.; Han, J.; Wei, J.; Lu, J.; Li, J. The axial compression mechanical properties and factors influencing spiral-ribbed thin-walled square concrete-filled steel tube composite members. Case Stud. Constr. Mater. 2022, 17, e01510. [Google Scholar] [CrossRef]
- Peng, Y.; Qiang, S.; Liu, Y. Study of sunshine temperature distribution in circular concrete-filled steel tube arch rib. Bridge Constr. 2006, 6, 18–20. (In Chinese) [Google Scholar]
- Zhou, X.; Zhan, Y.; Mou, T.; Li, Z. Experimental Research on Flexural Mechanical Properties of Ultrahigh Strength Concrete Filled Steel Tubes. Materials 2022, 15, 5262. [Google Scholar] [CrossRef] [PubMed]
- Su, J. Survey on CFST Arch Bridges and Research on Their Void Problem. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2012. (In Chinese). [Google Scholar]
- Han, L.; Yang, Y.; Li, Y.; Feng, B. Hydration heat and shrinkage of high performance concrete-filled steel tubes. China Civ. Eng. J. 2006, 3, 1–9. (In Chinese) [Google Scholar]
- Chang, X.; Huang, C.; Jiang, D.; Song, Y. Push-out test of pre-stressing concrete filled circular steel tube columns by means of expansive cement. Constr. Build. Mater. 2009, 23, 491–497. [Google Scholar]
- Nagataki, S.; Gomi, H. Expansive admixtures (mainly ettringite). Cem. Concr. Compos. 1998, 20, 163–170. [Google Scholar] [CrossRef]
- Carballosa, P.; García Calvo, J.L.; Revuelta, D. Influence of expansive calcium sulfoaluminate agent dosage on properties and microstructure of expansive self-compacting concretes. Cem. Concr. Compos. 2020, 107, 103464. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, Y.; Ba, H.; Liu, M. Synergistic effects of ettringite-based expansive agent and polypropylene fiber on early-age anti-shrinkage and anti-cracking properties of mortars. J. Build. Eng. 2021, 39, 102275. [Google Scholar] [CrossRef]
- Deng, M.; Hong, D.; Lan, X.; Tang, M. Mechanism of expansion in hardened cement pastes with hard-burnt free lime. Cem. Concr. Res. 1995, 2, 440–448. [Google Scholar] [CrossRef]
- Yang, G.; Wang, H.; Wan-Wendner, R.; Hu, Z.; Liu, J. Cracking behavior of ultra-high strength mortar with CaO-based expansive agent and superabsorbent polymer. Constr. Build. Mater. 2022, 357, 129281. [Google Scholar] [CrossRef]
- Zhang, J. Recent advance of MgO expansive agent in cement and concrete. J. Build. Eng. 2022, 45, 103633. [Google Scholar] [CrossRef]
- Jiang, F.; Mao, Z.; Yu, L. Hydration and expansion characteristics of MgO expansive agent in mass concrete. Materials 2022, 15, 8028. [Google Scholar] [CrossRef]
- Mo, L.; Deng, M.; Tang, M.; Al-Tabbaa, A. MgO expansive cement and concrete in China: Past, present and future. Cem. Concr. Res. 2014, 57, 1–12. [Google Scholar] [CrossRef]
- Zhou, Q.; Lachowski, E.E.; Glasser, F.P. Metaettringite, a decomposition product of ettringite. Cem. Concr. Res. 2004, 34, 703–710. [Google Scholar] [CrossRef]
- Baquerizo, L.; Matschei, T.; Scrivener, K. Impact of water activity on the stability of ettringite. Cem. Concr. Res. 2016, 79, 31–44. [Google Scholar] [CrossRef]
- Shen, P.; Lu, J.; Zheng, H.; Lu, L.; Wang, F.; He, Y. Expansive ultra-high performance concrete for concrete-filled steel tube applications. Cem. Concr. Compos. 2020, 114, 103813. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, J.; Cai, Y.; Ning, F. Research progress on surface modification of calcium hydroxide expansive additive. Bull. Ceram. Soc. 2017, 1, 121–125. (In Chinese) [Google Scholar]
- Feng, J.; Miao, M.; Yan, P. The effect of curing temperature on the properties of shrinkage-compensated binder. Sci. China Technol. Sci. 2011, 54, 869–875. (In Chinese) [Google Scholar] [CrossRef]
- Wang, N.; Xiu, X. Study on the application of calcium-oxide calcium sulphoaluminate composite expansion agent in high performance concrete. Constr. Technol. 2017, S1, 225–257. (In Chinese) [Google Scholar]
- Mo, L.; Deng, M.; Tang, M. Effects of calcinations condition on expansion property of MgO-type expansive agent used in cement-based materials. Cem. Concr. Res. 2010, 40, 437–446. [Google Scholar] [CrossRef]
- Li, S.; Cheng, S.; Mo, L.; Deng, M. Effects of Steel Slag Powder and Expansive Agent on the Properties of Ultra-High Performance Concrete (UHPC): Based on a Case Study. Materials 2020, 13, 683. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Liu, P.; Min, Q.; Yang, J. Concrete structural self-waterproofing system of underground works and its engineering application. China Build. Waterproofing 2020, 11, 37–41. [Google Scholar]
- Chen, C.; Lin, X. Magnesium Oxide Expansion Agent and Its Application in Concrete. Sci. Technol. Eng. 2020, 28, 11413–11420. (In Chinese) [Google Scholar]
- Yao, H.; Zheng, J.; Xue, X.; Li, H. Experimental research on using MgO expansion agent self-stressing concrete-filled steel tube. J. Jiamusi Univ. (Nat. Sci. Ed.) 2008, 3, 289–291. (In Chinese) [Google Scholar]
- Cai, Y. Research on the Preparation and Performance of Magnesia Micro-Expansion C50 Steel Tube-Confined Concrete. Master’s Thesis, Wuhan University of Technology, Wuhan, China, 2008. (In Chinese). [Google Scholar]
- Liu, J.; Zhang, S.; Tian, Q.; Guo, F.; Wang, Y. Deformation of high performance concrete containing MgO composite expansive agent. J. Southeast Univ. (Nat. Sci. Ed.) 2010, 40, 150–154. (In Chinese) [Google Scholar]
- Yu, F.; Feng, J.; Wang, S.; Yang, G.; Yan, P. Study on expansion and mechanical properties of composite cementitious systems with multi-expansion sources expansion agent. Bull. Ceram. Soc. 2019, 1, 148–154. (In Chinese) [Google Scholar]
- Zhao, H.; Li, X.; Chen, X.; Qiao, C.; Xu, W.; Wang, X.; Song, H. Microstructure evolution of cement mortar containing MgO-CaO blended expansive agent and temperature rising inhibitor under multiple curing temperatures. Constr. Build. Mater. 2021, 278, 122376. [Google Scholar] [CrossRef]
- GB175-2007; Standard for Ordinary Portland Cement. China Architecture & Building Press: Beijing, China, 2007. (In Chinese)
- DL/T 5296-2013; Technical Specification of Magnesium Oxide Expansive for Use in Hydraulic Concrete. China Electric Power Press: Beijing, China, 2020. (In Chinese)
- Lu, A.; Xu, W.; Wang, R.; Wang, Y.; Tian, Q.; Liu, J. Interpretation of T/CECS 10082—2020 Calcium and Magnesium Oxides Based Expansive Agent for Concrete. China Concr. Cem. Prod. 2020, 9, 74–78. (In Chinese) [Google Scholar]
- Miao, C.; Tian, Q.; Sun, W.; Liu, J. Water consumption of the early-age paste and the determination of “time-zero” of self-desiccation shrinkage. Cem. Concr. Res. 2007, 37, 1496–1501. [Google Scholar]
- Mu, S.; Sun, Z.; Sun, X. A Study on the Microstructure and Expanding Mechanism of Highly Free-calcium Oxide Cement. J. Wuhan Univ. Technol. 2001, 23, 27–29. (In Chinese) [Google Scholar]
- Chen, X.; Wei, S.; Wang, Q.; Tang, M.; Shen, X.; Zou, X.; Shen, Y.; Ma, B. Morphology prediction of portlandite: Atomistic simulations and experimental research. Appl. Surf. Sci. 2020, 502, 144296. [Google Scholar] [CrossRef]
- Liu, J.; Guo, S.; Tian, Q.; Wang, Y.; Zhang, S. Hydration of CaO Expansion Clinker. J. Build. Mater. 2014, 17, 15–18. (In Chinese) [Google Scholar] [CrossRef]
- Xia, R.; Wang, H.; Xiang, F.; Wang, H.; Zhang, Z.; Cheng, F. Influencing Factors of Carbonation Modification of Calcium Oxide Expansive Clinker. Mater. Rep. 2022, 36, 22080160. (In Chinese) [Google Scholar]
- Zhao, H.; Xiang, Y.; Chen, X.; Huang, J.; Xu, W.; Li, H.; Wang, Y.; Wang, P. Mechanical properties and volumetric deformation of early-age concrete containing CaO-MgO blended expansive agent and temperature rising inhibitor. Constr. Build. Mater. 2021, 299, 123977. [Google Scholar] [CrossRef]
Raw Material | Reaction Times (s) | Chemical Composition (wt%) | ||||||
---|---|---|---|---|---|---|---|---|
MgO | CaO | SO3 | SiO2 | Al2O3 | Fe2O3 | Loss | ||
Conch Cement | - | 1.35 | 60.05 | 3.35 | 23.60 | 3.95 | 5.43 | 1.15 |
65 s MgO | 65 | 90.17 | 1.87 | - | 1.83 | 1.39 | 2.15 | 2.59 |
120 s MgO | 120 | 90.93 | 1.96 | - | 1.71 | 1.24 | 2.00 | 2.16 |
220 s MgO | 220 | 91.38 | 2.24 | - | 2.36 | 1.32 | 1.12 | 1.58 |
CaO expansive agent | - | 1.27 | 87.5 | 3.41 | 1.72 | 4.79 | 3.78 | 0.94 |
No. | W/C | Mix Ratio (kg/m3) | |||||||
---|---|---|---|---|---|---|---|---|---|
Cement | Fly Ash | CaO Expansive Agent | MgO Expansive Agent | Water | Sand | Small Basalt | Medium Basalt | ||
C60-ref | 0.29 | 416 | 104 | 0 | 0 | 151 | 720 | 249 | 746 |
6% CaO + 2% 65 s MgO | 0.29 | 416 | 62.4 | 31.2 | 10.4 | 151 | 720 | 249 | 746 |
6% CaO + 2% 120 s MgO | 0.29 | 416 | 62.4 | 31.2 | 10.4 | 151 | 720 | 249 | 746 |
6% CaO + 2% 220 s MgO | 0.29 | 416 | 62.4 | 31.2 | 10.4 | 151 | 720 | 249 | 746 |
6% CaO + 4% 65 s MgO | 0.29 | 416 | 52 | 31.2 | 20.8 | 151 | 720 | 249 | 746 |
6% CaO | 0.29 | 416 | 72.8 | 31.2 | 0 | 151 | 720 | 249 | 746 |
8% CaO | 0.29 | 416 | 62.4 | 41.6 | 0 | 151 | 720 | 249 | 746 |
4% 65 s MgO | 0.29 | 416 | 83.2 | 0 | 20.8 | 151 | 720 | 249 | 746 |
4% 120 s MgO | 0.29 | 416 | 83.2 | 0 | 20.8 | 151 | 720 | 249 | 746 |
No. | 6% CaO + 4% 65 s MgO | 4% 65 s MgO | 4% 120 s MgO |
---|---|---|---|
Hydration degree/% | 87.3 | 85.5 | 70.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, A.; Xu, W.; Wang, Q.; Wang, R.; Ye, Z. Effect of Different Expansive Agents on the Deformation Properties of Core Concrete in a Steel Tube with a Harsh Temperature History. Materials 2023, 16, 1780. https://doi.org/10.3390/ma16051780
Lu A, Xu W, Wang Q, Wang R, Ye Z. Effect of Different Expansive Agents on the Deformation Properties of Core Concrete in a Steel Tube with a Harsh Temperature History. Materials. 2023; 16(5):1780. https://doi.org/10.3390/ma16051780
Chicago/Turabian StyleLu, Anqun, Wen Xu, Qianqian Wang, Rui Wang, and Zhiyuan Ye. 2023. "Effect of Different Expansive Agents on the Deformation Properties of Core Concrete in a Steel Tube with a Harsh Temperature History" Materials 16, no. 5: 1780. https://doi.org/10.3390/ma16051780
APA StyleLu, A., Xu, W., Wang, Q., Wang, R., & Ye, Z. (2023). Effect of Different Expansive Agents on the Deformation Properties of Core Concrete in a Steel Tube with a Harsh Temperature History. Materials, 16(5), 1780. https://doi.org/10.3390/ma16051780