Challenges and Solutions for Low-Temperature Lithium–Sulfur Batteries: A Review
Abstract
:1. Introduction
2. The Underlying Mechanisms of Li-S Batteries at Low Temperature
3. Anode
3.1. Exploration of Substitution and Improvement for Anode Materials
3.1.1. Graphite
3.1.2. Other Related Investigations
3.2. Electrolyte Chemistry Modulation
3.3. Artificial SEI Layer
3.4. The 3D Current Collector Hosts and/or Lithophilic Site Modification
4. Cathode
4.1. Challenges
4.2. Advances
4.3. Outlooks
5. Electrolyte
5.1. Challenges
5.2. Advances
5.2.1. Solvent Selection
5.2.2. Lithium Salt Optimization
5.2.3. Additives
6. Conclusions and Outlook
- Pay more attention to the performance of the low-temperature Li-S batteries with high loading. In the current research, a considerable electrochemical performance has been achieved under a relatively low mass loading. However, it is inevitably necessary to enhance the mass loading when the Li-S batteries are for commercial application.
- Construct an artificial SEI layer towards cryogenic applications. As ideal SEI layers are difficult to achieve at low temperatures, it may be an effective and reasonable strategy to pretreat the lithium surface at room temperature, constructing artificial SEIs and, thus, improving low-temperature performance prior to low-temperature operation.
- Further investigate the mechanism for low-temperature Li-S batteries. In contrast to the transformation process of LiPSs at room temperature, aggregation and slow ion transportation at low temperatures can affect the kinetics of sulfur species. It is, therefore, suggested that experimental investigation and theoretical simulation should be combined for future studies. It is of significant importance to explore the critical rate-limiting steps in the transformation of LiPSs at low temperatures.
- Evaluate the pouch-cell performance. Li-S batteries are gradually being developed from basic research to practical applications. To bridge the gap between laboratory experiments and industrial production, there is a growing body of work to verify the feasibility of the proposed strategies in practical applications. Consequently, in future research and development of low-temperature Li-S batteries, pouch cells should also be fully utilized to assess battery performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schipper, F.; Aurbach, D. A brief review: Past, present and future of lithium ion batteries. Russ. J. Electrochem. 2016, 52, 1095–1121. [Google Scholar] [CrossRef]
- Mauger, A.; Julien, C.M.; Armand, M.; Zaghib, K. Tribute to John B. Goodenough: From Magnetism to Rechargeable Batteries. Adv. Energy Mater. 2021, 11, 2170006. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, T.; Tian, H.; Su, D.; Zhang, Q.; Wang, G. Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability. Adv. Mater. 2021, 33, 2003666. [Google Scholar] [CrossRef]
- Wei, Z.; Ren, Y.; Sokolowski, J.; Zhu, X.; Wu, G. Mechanistic understanding of the role separators playing in advanced lithium-sulfur batteries. InfoMat 2020, 2, 483–508. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Liu, X.; Jiang, X.; Liu, Z.; Peng, Z.; Feng, X.; Chen, W.; Xia, D.; Ai, X.; Yang, H.; et al. Enabling an intrinsically safe and high-energy-density 4.5 V-class Li-ion battery with nonflammable electrolyte. InfoMat 2020, 2, 984–992. [Google Scholar] [CrossRef]
- Rojaee, R.; Plunkett, S.; Rasul, M.G.; Cheng, M.; Jabbari, V.; Shahbazian-Yassar, R. Interfacial engineering of lithium-polymer batteries with in situ UV cross-linking. InfoMat 2021, 3, 1016–1027. [Google Scholar] [CrossRef]
- Wang, T.; He, J.; Cheng, X.-B.; Zhu, J.; Lu, B.; Wu, Y. Strategies toward High-Loading Lithium–Sulfur Batteries. ACS Energy Lett. 2023, 8, 116–150. [Google Scholar] [CrossRef]
- Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Garsuch, A.; Chesneau, F.F. Review on Li-Sulfur Battery Systems: An Integral Perspective. Adv. Energy Mater. 2015, 5, 1500212. [Google Scholar] [CrossRef]
- Knoop, J.E.; Ahn, S. Recent advances in nanomaterials for high-performance Li–S batteries. J. Energy Chem. 2020, 47, 86–106. [Google Scholar] [CrossRef]
- Hong, X.; Wang, R.; Liu, Y.; Fu, J.; Liang, J.; Dou, S. Recent advances in chemical adsorption and catalytic conversion materials for Li–S batteries. J. Energy Chem. 2020, 42, 144–168. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Liu, L.; Wang, Y.; Shang, Y.; Zhang, L.; Wang, J.; Zheng, Y.; Schmidt, O.G.; Yang, H.Y. Elucidating the reaction kinetics of lithium–sulfur batteries by operando XRD based on an open-hollow S@MnO2 cathode. J. Mater. Chem. A 2019, 7, 6651–6658. [Google Scholar] [CrossRef]
- Zhuang, Z.; Kang, Q.; Wang, D.; Li, Y. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866. [Google Scholar] [CrossRef]
- Xiao, Z.; Yang, Z.; Li, Z.; Li, P.; Wang, R. Synchronous Gains of Areal and Volumetric Capacities in Lithium–Sulfur Batteries Promised by Flower-like Porous Ti3C2Tx Matrix. ACS Nano 2019, 13, 3404–3412. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Cui, W.; Chu, F.; Wu, F. Lithium metal anodes: Present and future. J. Energy Chem. 2020, 48, 145–159. [Google Scholar] [CrossRef]
- Jiao, L.; Zhang, C.; Geng, C.; Wu, S.; Li, H.; Lv, W.; Tao, Y.; Chen, Z.; Zhou, G.; Li, J.; et al. Capture and Catalytic Conversion of Polysulfides by In Situ Built TiO2-MXene Heterostructures for Lithium–Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1900219. [Google Scholar] [CrossRef]
- Yao, Y.-X.; Zhang, X.-Q.; Li, B.-Q.; Yan, C.; Chen, P.-Y.; Huang, J.-Q.; Zhang, Q. A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat 2020, 2, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Peng, Z. Intermetallic interphases in lithium metal and lithium ion batteries. InfoMat 2021, 3, 1083–1109. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Y.; Xia, C.; Han, Y.; Sun, Q.; Wang, X.; Chen, W.; Jian, X.; Lv, W.; Ma, J.; et al. Polybenzimidazole functionalized electrolyte with Li-wetting and self-fluorination functionalities for practical Li metal batteries. InfoMat 2022, 4, e12247. [Google Scholar] [CrossRef]
- Nakamura, N.; Ahn, S.; Momma, T.; Osaka, T. Future potential for lithium-sulfur batteries. J. Power Sources 2023, 558, 232566. [Google Scholar] [CrossRef]
- Zhu, K.; Wang, C.; Chi, Z.; Ke, F.; Yang, Y.; Wang, A.; Wang, W.; Miao, L. How Far Away Are Lithium-Sulfur Batteries From Commercialization? Front. Energy Res. 2019, 7, 123. [Google Scholar] [CrossRef]
- Bhargav, A.; Manthiram, A. Li-S batteries, what’s next? Next Energy 2023, 1, 100012. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, F.; Ma, Y.; Luo, S.; Li, Y.; Hu, A.; He, M.; Li, F.; Chen, D.; Chen, W.; et al. Challenges and advances on low-temperature rechargeable lithium-sulfur batteries. Nano Res. 2022. [Google Scholar] [CrossRef]
- Hatzell, K.B. Make ion–solvent interactions weaker. Nat. Energy 2021, 6, 223–224. [Google Scholar] [CrossRef]
- Xu, K.; von Cresce, A.; Lee, U. Differentiating Contributions to “Ion Transfer” Barrier from Interphasial Resistance and Li+ Desolvation at Electrolyte/Graphite Interface. Langmuir 2010, 26, 11538–11543. [Google Scholar] [CrossRef] [PubMed]
- Thenuwara, A.C.; Shetty, P.P.; McDowell, M.T. Distinct Nanoscale Interphases and Morphology of Lithium Metal Electrodes Operating at Low Temperatures. Nano Lett. 2019, 19, 8664–8672. [Google Scholar] [CrossRef]
- Bai, P.; Li, J.; Brushett, F.R.; Bazant, M.Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 2016, 9, 3221–3229. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Bhargav, A.; Jones, J.-P.; Bugga, R.V.; Manthiram, A. Influence of Lithium Polysulfide Clustering on the Kinetics of Electrochemical Conversion in Lithium–Sulfur Batteries. Chem. Mater. 2020, 32, 2070–2077. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.-Y.; Xiao, R.-J.; Gu, L.; Guo, Y.-G.; Wen, R.; Wan, L.-J. Interfacial Mechanism in Lithium–Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics. J. Am. Chem. Soc. 2018, 140, 8147–8155. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-H.; Huang, X.; Schwarz, K.; Huang, R.; Arias, T.A.; Brock, J.D.; Abruña, H.D. Direct visualization of sulfur cathodes: New insights into Li–S batteries via operando X-ray based methods. Energy Environ. Sci. 2018, 11, 202–210. [Google Scholar] [CrossRef]
- Chu, H.; Noh, H.; Kim, Y.-J.; Yuk, S.; Lee, J.-H.; Lee, J.; Kwack, H.; Kim, Y.; Yang, D.-K.; Kim, H.-T. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nat. Commun. 2019, 10, 188. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Tian, H.; Jin, Y.; Tao, X.; Liu, B.; Zhang, R.; Seh, Z.W.; Zhuo, D.; Liu, Y.; Sun, J.; et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845. [Google Scholar] [CrossRef] [Green Version]
- Gerber, L.C.H.; Frischmann, P.D.; Fan, F.Y.; Doris, S.E.; Qu, X.; Scheuermann, A.M.; Persson, K.; Chiang, Y.-M.; Helms, B.A. Three-Dimensional Growth of Li2S in Lithium–Sulfur Batteries Promoted by a Redox Mediator. Nano Lett. 2016, 16, 549–554. [Google Scholar] [CrossRef]
- Petzl, M.; Kasper, M.; Danzer, M.A. Lithium plating in a commercial lithium-ion battery—A low-temperature aging study. J. Power Sources 2015, 275, 799–807. [Google Scholar] [CrossRef]
- Li, Q.; Lu, D.; Zheng, J.; Jiao, S.; Luo, L.; Wang, C.-M.; Xu, K.; Zhang, J.-G.; Xu, W. Li+-Desolvation Dictating Lithium-Ion Battery’s Low-Temperature Performances. ACS Appl. Mater. Interfaces 2017, 9, 42761–42768. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Liu, K.; Fan, Y.; Yuan, M.; Liu, B.; Liu, W.; Shi, F.; Liu, Y.; Chen, W.; Lopez, J.; et al. An Aqueous Inorganic Polymer Binder for High Performance Lithium-Sulfur Batteries with Flame-Retardant Properties. ACS Cent. Sci. 2018, 4, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Peng, H.-J.; Huang, J.-Q.; Zhang, Q. Review of nanostructured current collectors in lithium–sulfur batteries. Nano Res. 2017, 10, 4027–4054. [Google Scholar] [CrossRef]
- Jeong, Y.C.; Kim, J.H.; Nam, S.; Park, C.R.; Yang, S.J. Rational Design of Nanostructured Functional Interlayer/Separator for Advanced Li–S Batteries. Adv. Funct. Mater. 2018, 28, 1707411. [Google Scholar] [CrossRef]
- Kong, L.L.; Wang, L.; Ni, Z.C.; Liu, S.; Li, G.R.; Gao, X.P. Lithium–Magnesium Alloy as a Stable Anode for Lithium–Sulfur Battery. Adv. Funct. Mater. 2019, 29, 8756. [Google Scholar] [CrossRef]
- Zhang, B.W.; Sun, B.; Fu, P.; Liu, F.; Zhu, C.; Xu, B.M.; Pan, Y.; Chen, C. A Review of the Application of Modified Separators in Inhibiting the “shuttle effect” of Lithium-Sulfur Batteries. Membranes 2022, 12, 790. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, X.; Li, S.; Wu, Y.; Yang, T.; Liu, J.; Qian, T.; Yan, C. Low-temperature Li-S batteries enabled by all amorphous conversion process of organosulfur cathode. J. Energy Chem. 2022, 64, 496–502. [Google Scholar] [CrossRef]
- Xiang, J.W.; Yang, L.Y.; Yuan, L.X.; Yuan, K.; Zhang, Y.; Huang, Y.Y.; Lin, J.; Pan, F.; Huang, Y.H. Alkali-Metal Anodes: From Lab to Market. JOULE 2019, 3, 2334–2363. [Google Scholar] [CrossRef]
- Wang, J.N.; Yi, S.S.; Liu, J.W.; Sun, S.Y.; Liu, Y.P.; Yang, D.W.; Xi, K.; Gao, G.X.; Abdelkader, A.; Yan, W.; et al. Suppressing the Shuttle Effect and Dendrite Growth in Lithium-Sulfur Batteries. ACS Nano 2020, 14, 9819–9831. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.B.; Sheng, O.W.; Luo, J.M.; Yuan, H.D.; Fang, C.; Zhang, W.K.; Huang, H.; Gan, Y.P.; Xia, Y.; Liang, C.; et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 2017, 37, 177–186. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, A.; Wang, J.; Niu, X.; Zhou, M.; Chen, W.; Lei, T.; Huang, J.; Li, Y.; Xue, L.; et al. Strong intermolecular polarization to boost polysulfide conversion kinetics for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2021, 9, 9771–9779. [Google Scholar] [CrossRef]
- Cai, W.; Yao, Y.X.; Zhu, G.L.; Yan, C.; Jiang, L.L.; He, C.; Huang, J.Q.; Zhang, Q. A review on energy chemistry of fast-charging anodes. Chem. Soc. Rev. 2020, 49, 3806–3833. [Google Scholar] [CrossRef]
- Collins, G.A.; Geaney, H.; Ryan, K.M. Alternative anodes for low temperature lithium-ion batteries. J. Mater. Chem. A 2021, 9, 14172–14213. [Google Scholar] [CrossRef]
- Zhang, N.; Deng, T.; Zhang, S.; Wang, C.; Chen, L.; Wang, C.; Fan, X. Critical Review on Low-Temperature Li-Ion/Metal Batteries. Adv. Mater. 2022, 34, e2107899. [Google Scholar] [CrossRef]
- Nobili, F.; Dsoke, S.; Mecozzi, T.; Marassi, R. Metal-oxidized graphite composite electrodes for lithium-ion batteries. Electrochim. Acta 2005, 51, 536–544. [Google Scholar] [CrossRef]
- Nobili, F.; Mancini, M.; Dsoke, S.; Tossici, R.; Marassi, R. Low-temperature behavior of graphite–tin composite anodes for Li-ion batteries. J. Power Sources 2010, 195, 7090–7097. [Google Scholar] [CrossRef]
- Marinaro, M.; Nobili, F.; Birrozzi, A.; Eswara Moorthy, S.K.; Kaiser, U.; Tossici, R.; Marassi, R. Improved low-temperature electrochemical performance of Li4Ti5O12 composite anodes for Li-ion batteries. Electrochim. Acta 2013, 109, 207–213. [Google Scholar] [CrossRef]
- Marinaro, M.; Mancini, M.; Nobili, F.; Tossici, R.; Damen, L.; Marassi, R. A newly designed Cu/Super-P composite for the improvement of low-temperature performances of graphite anodes for lithium-ion batteries. J. Power Sources 2013, 222, 66–71. [Google Scholar] [CrossRef]
- Friesen, A.; Hildebrand, S.; Horsthemke, F.; Börner, M.; Klöpsch, R.; Niehoff, P.; Schappacher, F.M.; Winter, M. Al2O3 coating on anode surface in lithium ion batteries: Impact on low temperature cycling and safety behavior. J. Power Sources 2017, 363, 70–77. [Google Scholar] [CrossRef]
- Cao, X.; Kim, J.H.; Oh, S.M. The effects of oxidation on the surface properties of MCMB-6-28. Electrochim. Acta 2002, 47, 4085–4089. [Google Scholar] [CrossRef]
- Wu, Y.P.; Jiang, C.; Wan, C.; Holze, R. Modified natural graphite as anode material for lithium ion batteries. J. Power Sources 2002, 111, 329–334. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, Y.; Wang, C.-Y. Li-Ion Cell Operation at Low Temperatures. J. Electrochem. Soc. 2013, 160, A636–A649. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Yuan, N.; Hu, B.; Ding, J.; Ge, S. Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance. J. Power Sources 2019, 430, 74–79. [Google Scholar] [CrossRef]
- Raccichini, R.; Varzi, A.; Chakravadhanula, V.S.K.; Kübel, C.; Balducci, A.; Passerini, S. Enhanced low-temperature lithium storage performance of multilayer graphene made through an improved ionic liquid-assisted synthesis. J. Power Sources 2015, 281, 318–325. [Google Scholar] [CrossRef]
- Zhao, G.; Wei, Z.; Zhang, N.; Sun, K. Enhanced low temperature performances of expanded commercial mesocarbon microbeads (MCMB) as lithium ion battery anodes. Mater. Lett. 2012, 89, 243–246. [Google Scholar] [CrossRef]
- Meng, X.; Liu, Y.; Wang, Z.; Zhang, Y.; Wang, X.; Qiu, J. A quasi-solid-state rechargeable cell with high energy and superior safety enabled by stable redox chemistry of Li2S in gel electrolyte. Energy Environ. Sci. 2021, 14, 2278–2290. [Google Scholar] [CrossRef]
- Han, Y.; Jie, Y.; Huang, F.; Chen, Y.; Lei, Z.; Zhang, G.; Ren, X.; Qin, L.; Cao, R.; Jiao, S. Enabling Stable Lithium Metal Anode through Electrochemical Kinetics Manipulation. Adv. Funct. Mater. 2019, 29, 4629. [Google Scholar] [CrossRef]
- Adair, K.R.; Banis, M.N.; Zhao, Y.; Bond, T.; Li, R.; Sun, X. Temperature-Dependent Chemical and Physical Microstructure of Li Metal Anodes Revealed through Synchrotron-Based Imaging Techniques. Adv Mater 2020, 32, e2002550. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.W.; Carter, R.; Love, C.T. Operational strategy to stabilize lithium metal anodes by applied thermal gradient. Energy Storage Mater. 2019, 22, 18–28. [Google Scholar] [CrossRef]
- Dong, X.; Lin, Y.; Li, P.; Ma, Y.; Huang, J.; Bin, D.; Wang, Y.; Qi, Y.; Xia, Y. High-Energy Rechargeable Metallic Lithium Battery at −70 °C Enabled by a Cosolvent Electrolyte. Angew. Chem. Int. Ed. 2019, 58, 5623–5627. [Google Scholar] [CrossRef]
- Sharifi, O.; Golmohammad, M.; Soozandeh, M.; Mehranjani, A.S. Improved Ga-doped Li7La3Zr2O12 garnet-type solid electrolytes for solid-state Li-ion batteries. J. Solid State Eelectrochemistry 2023, 1–12. [Google Scholar] [CrossRef]
- Alizadeh, S.M.; Moghim, I.; Golmohammad, M. Synthesis and characterization of highly conductive Ga/Y co-doped LLZO by facile combustion sol-gel method. Solid State Ion. 2023, 397, 116260. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, L.; Zheng, P.; Sun, J.; Liu, C.; Chai, J.; Li, X.; Zheng, Y.; Liu, Z. Recent Advances in Stability Issues of Inorganic Solid Electrolytes and Composite Solid Electrolytes for All-Solid-State Batteries. Chem. Rec. 2022, 22, e202200116. [Google Scholar] [CrossRef]
- Yan, Q.; Whang, G.; Wei, Z.; Ko, S.-T.; Sautet, P.; Tolbert, S.H.; Dunn, B.S.; Luo, J. A Perspective on interfacial engineering of lithium metal anodes and beyond. Appl. Phys. Lett. 2020, 117, 8417. [Google Scholar] [CrossRef]
- Katorova, N.S.; Luchkin, S.Y.; Rupasov, D.P.; Abakumov, A.M.; Stevenson, K.J. Origins of irreversible capacity loss in hard carbon negative electrodes for potassium-ion batteries. J. Chem. Phys. 2020, 152, 194704. [Google Scholar] [CrossRef]
- Xu, K.; Lam, Y.F.; Zhang, S.S.; Jow, T.R.; Curtis, T.B. Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J. Phys. Chem. C 2007, 111, 7411–7421. [Google Scholar] [CrossRef]
- Aurbach, D.; Markovsky, B.; Levi, M.D.; Levi, E.; Schechter, A.; Moshkovich, M.; Cohen, Y. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J. Power Sources 1999, 81-82, 95–111. [Google Scholar] [CrossRef]
- Shao, Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J.-G.; Wang, Y.; Liu, J. Making Li-Air Batteries Rechargeable: Material Challenges. Adv. Funct. Mater. 2013, 23, 987–1004. [Google Scholar] [CrossRef]
- Chu, P.; Zhao, H.L.; Wang, J.; Xie, H.L.; Han, C.Q.; Yang, Z. Bifunctional 3D Graphite@Ni-Fe foam negative current collector toward stable liquid metal battery. J. Alloys Compd. 2022, 903, 3952. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Zhang, S.; Hou, Y. Sulfur Hosts Against the Shuttle Effect. Small Methods 2018, 2, 1700345. [Google Scholar] [CrossRef]
- Shao, Q.; Zhu, S.; Chen, J. A review on lithium-sulfur batteries: Challenge, development, and perspective. Nano Res. 2023, 1–42. [Google Scholar] [CrossRef]
- Chen, L.; Shaw, L.L. Recent advances in lithium-sulfur batteries. J. Power Sources 2014, 267, 770–783. [Google Scholar] [CrossRef]
- Huang, C.K.; Sakamoto, J.S.; Wolfenstine, J.; Surampudi, S. The Limits of Low-Temperature Performance of Li-Ion Cells. J. Electrochem. Soc. 2000, 147, 2893. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.Y.; Zheng, Y.P.; Zhang, X.H.; Shi, Y.H.; Liu, S.Y.; Wang, H.C.; Wu, X.L.; Sun, H.Z.; Zhang, J.P. High-performance and low-temperature lithium–sulfur batteries: Synergism of thermodynamic and kinetic regulation. Adv. Energy Mater. 2018, 8, 1703638. [Google Scholar] [CrossRef]
- Deng, D.R.; Xue, F.; Bai, C.D.; Lei, J.; Yuan, R.; Zheng, M.S.; Dong, Q.F. Enhanced Adsorptions to Polysulfides on Graphene-Supported BN Nanosheets with Excellent Li-S Battery Performance in a Wide Temperature Range. ACS Nano 2018, 12, 11120–11129. [Google Scholar] [CrossRef]
- Manthiram, A.; Fu, Y.; Su, Y.-S. Challenges and Prospects of Lithium–Sulfur Batteries. Acc. Chem. Res. 2013, 46, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-C.; Song, M.-S.; Lee, H.; Kim, H.-S.; Ahn, H.-J.; Lee, J.-Y. Effect of Multiwalled Carbon Nanotubes on Electrochemical Properties of Lithium/Sulfur Rechargeable Batteries. J. Electrochem. Soc. 2003, 150, A889. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, W.; Li, J.; Xu, Z.; Guan, L. Encapsulating MWNTs Into Hollow Porous Carbon Nanotub.: A Tube-in-Tube Carbon Nanostructure High-Performance Lithium-Sulfur Batteries. Adv. Mater. 2014, 26, 5113–5118. [Google Scholar] [CrossRef]
- He, G.; Evers, S.; Liang, X.; Cuisinier, M.; Garsuch, A.; Nazar, L.F. Tailoring Porosity in Carbon Nanospheres for Lithium–Sulfur Battery Cathodes. ACS Nano 2013, 7, 10920–10930. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhao, X.; Wu, Z.-S.; Dong, Y.; Lu, P.; Chen, J.; Ren, W.; Cheng, H.-M.; Bao, X. Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithiumsulfur batteries. Nano Energy 2019, 60, 743–751. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, H.; Li, Z.; Lou, X.W. Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries. Angew. Chem. 2016, 55, 3982–3986. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Nazar, L.F. In Situ Reactive Assembly of Scalable Core-Shell Sulfur-MnO2 Composite Cathodes. ACS Nano 2016, 10, 4192–4198. [Google Scholar] [CrossRef]
- Li, Z.; Wu, H.B.; Lou, X.W. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy Environ. Sci. 2016, 9, 3061–3070. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, Y.; Liu, J.; Sun, D.; Ma, X.; Jin, Y.; Cui, Y. A multifunctional graphene oxide-Zn(II)-triazole complex for improved performance of lithium-sulfur battery at low temperature. Electrochim. Acta 2018, 271, 58–66. [Google Scholar] [CrossRef]
- Gao, N.; Zhang, Y.; Chen, C.; Li, B.; Li, W.; Lu, H.; Yu, L.; Zheng, S.; Wang, B. Low-temperature Li–S battery enabled by CoFe bimetallic catalysts. J. Mater. Chem. A 2022, 10, 8378–8389. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, Y.; Jiang, J.; Yan, X.; Sun, D.; Jin, Y.; Nan, C.; Munakata, H.; Kanamura, K. Good Low-Temperature Properties of Nitrogen-Enriched Porous Carbon as Sulfur Hosts for High-Performance Li–S Batteries. ACS Appl. Mater. Interfaces 2016, 8, 17253–17259. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, B.; Dong, X.; Wang, Y.; Xia, Y. A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance. Angew. Chem. 2017, 56, 16606–16610. [Google Scholar] [CrossRef]
- Akridge, J.R.; Mikhaylik, Y.V.; White, N. Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ion. 2004, 175, 243–245. [Google Scholar] [CrossRef]
- Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4417. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Shin, W.; Ma, L.; Hong, J.J.; Wei, Z.; Liu, Y.; Zhang, S.; Wu, X.; Xu, Y.; Guo, Q.; et al. A High-Rate Aqueous Proton Battery Delivering Power Below −78 °C via an Unfrozen Phosphoric Acid. Adv. Energy Mater. 2020, 10, 968. [Google Scholar] [CrossRef]
- Xu, R.; Lu, J.; Amine, K. Progress in Mechanistic Understanding and Characterization Techniques of Li-S Batteries. Adv. Energy Mater. 2015, 5, 1500408. [Google Scholar] [CrossRef]
- Peng, H.-J.; Huang, J.-Q.; Cheng, X.-B.; Zhang, Q. Review on High-Loading and High-Energy Lithium–Sulfur Batteries. Adv. Energy Mater. 2017, 7, 1700260. [Google Scholar] [CrossRef]
- Shen, C.; Xie, J.; Zhang, M.; Andrei, P.; Hendrickson, M.; Plichta, E.J.; Zheng, J.P. Understanding the role of lithium polysulfide solubility in limiting lithium-sulfur cell capacity. Electrochim. Acta 2017, 248, 90–97. [Google Scholar] [CrossRef]
- Lin, Q.; Huang, L.; Liu, W.; Li, Z.; Fang, R.; Wang, D.W.; Yang, Q.H.; Lv, W. High-performance lithium-sulfur batteries enabled by regulating Li(2)S deposition. Phys. Chem. Chem. Phys. 2021, 23, 21385–21398. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Z.; Shi, Y.; Qi, F.; Gao, X.; Yang, H.; Cheng, H.-M.; Li, F. Ion-Dipole Chemistry Drives Rapid Evolution of Li Ions Solvation Sheath in Low-Temperature Li Batteries. Adv. Energy Mater. 2021, 11, 2100935. [Google Scholar] [CrossRef]
- Huang, X.; Li, R.; Sun, C.; Zhang, H.; Zhang, S.; Lv, L.; Huang, Y.; Fan, L.; Chen, L.; Noked, M.; et al. Solvent-Assisted Hopping Mechanism Enables Ultrafast Charging of Lithium-Ion Batteries. ACS Energy Lett. 2022, 7, 3947–3957. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, T.; Wang, E.; Sun, B.; Sun, K.; Peng, Z. Unlocking the Low-Temperature Potential of Propylene Carbonate to −30 °C via N-Methylpyrrolidone. ACS Appl. Mater. Interfaces 2022, 14, 45484–45493. [Google Scholar] [CrossRef]
- Mikhaylik, Y.V.; Akridge, J.R. Low Temperature Performance of Li/S Batteries. J. Electrochem. Soc. 2003, 150, A306. [Google Scholar] [CrossRef]
- Holoubek, J.; Liu, H.; Wu, Z.; Yin, Y.; Xing, X.; Cai, G.; Yu, S.; Zhou, H.; Pascal, T.A.; Chen, Z.; et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 2021, 6, 303–313. [Google Scholar] [CrossRef]
- Jiang, J.; Fan, Q.; Liu, H.; Chou, S.; Konstantinov, K.; Wang, J. Understanding the Effects of the Low-Concentration Electrolyte on the Performance of High-Energy-Density Li–S Batteries. ACS Appl. Mater. Interfaces 2021, 13, 28405–28414. [Google Scholar] [CrossRef]
- Zhang, S.S.; Xu, K.; Jow, T.R. An improved electrolyte for the LiFePO4 cathode working in a wide temperature range. J. Power Sources 2006, 159, 702–707. [Google Scholar] [CrossRef]
- Lin, S.; Hua, H.; Lai, P.; Zhao, J. A Multifunctional Dual-Salt Localized High-Concentration Electrolyte for Fast Dynamic High-Voltage Lithium Battery in Wide Temperature Range. Adv. Energy Mater. 2021, 11, 2101775. [Google Scholar] [CrossRef]
- Kim, H.; Wu, F.; Lee, J.T.; Nitta, N.; Lin, H.-T.; Oschatz, M.; Cho, W.I.; Kaskel, S.; Borodin, O.; Yushin, G. In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSI-Based Organic Electrolytes. Adv. Energy Mater. 2015, 5, 1401792. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, J.; Wang, C.; Hu, R.; Du, X.; Tang, B.; Qu, H.; Wu, H.; Liu, X.; Zhou, X.; et al. Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries. J. Energy Chem. 2020, 51, 154–160. [Google Scholar] [CrossRef]
- Liang, X.; Wen, Z.; Liu, Y.; Wu, M.; Jin, J.; Zhang, H.; Wu, X. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power Sources 2011, 196, 9839–9843. [Google Scholar] [CrossRef]
- Liu, D.; Xiong, X.; Liang, Q.; Wu, X.; Fu, H. An inorganic-rich SEI induced by LiNO3 additive for a stable lithium metal anode in carbonate electrolyte. Chem. Commun. 2021, 57, 9232–9235. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Luo, R.; Piao, Z.; Li, C.; Wang, J.; Yu, K.; Zhou, G.; Cheng, H.-M. High-Performance Lithium Metal Batteries with a Wide Operating Temperature Range in Carbonate Electrolyte by Manipulating Interfacial Chemistry. ACS Energy Lett. 2021, 6, 3170–3179. [Google Scholar] [CrossRef]
- Yao, Y.J.; Lu, Q.; Gao, H.; Wang, X.H.; Wang, F.S. Studies on the Influence of Pyrene on the Low Temperature Performance of Polyaniline Containing Lithium-sulfur Battery. Acta Polym. Sinica 2017, 9, 1517–1523. [Google Scholar] [CrossRef]
- Piao, Z.; Xiao, P.; Luo, R.; Ma, J.; Gao, R.; Li, C.; Tan, J.; Yu, K.; Zhou, G.; Cheng, H.-M. Constructing a Stable Interface Layer by Tailoring Solvation Chemistry in Carbonate Electrolytes for High-Performance Lithium-Metal Batteries. Adv. Mater. 2022, 34, 2108400. [Google Scholar] [CrossRef] [PubMed]
- Aroganam, G.; Manivannan, N.; Harrison, D. Review on Wearable Technology Sensors Used in Consumer Sport Applications. Sensors 2019, 19, 1983. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Li, P.; Yu, J.; Zhao, L.-D.; Kong, L. Approaching energy-dense and cost-effective lithium–sulfur batteries: From materials chemistry and price considerations. Energy 2020, 201, 117718. [Google Scholar] [CrossRef]
- Park, J.-W.; Jo, S.-C.; Kim, M.-J.; Choi, I.-H.; Kim, B.G.; Lee, Y.-J.; Choi, H.-Y.; Kang, S.; Kim, T.; Baeg, K.-J. Flexible high-energy-density lithium-sulfur batteries using nanocarbon-embedded fibrous sulfur cathodes and membrane separators. NPG Asia Mater. 2021, 13, 30. [Google Scholar] [CrossRef]
- Barghamadi, M.; Kapoor, A.; Wen, C. A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery. J. Electrochem. Soc. 2013, 160, A1256. [Google Scholar] [CrossRef]
- Mikhaylik, Y.V.; Kovalev, I.; Schock, R.; Kumaresan, K.; Xu, J.; Affinito, J. High Energy Rechargeable Li-S Cells for EV Application: Status, Remaining Problems and Solutions. ECS Trans. 2010, 25, 23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Qin, T.; Wang, P.; Yuan, M.; Li, Q.; Feng, S. Challenges and Solutions for Low-Temperature Lithium–Sulfur Batteries: A Review. Materials 2023, 16, 4359. https://doi.org/10.3390/ma16124359
Liu Y, Qin T, Wang P, Yuan M, Li Q, Feng S. Challenges and Solutions for Low-Temperature Lithium–Sulfur Batteries: A Review. Materials. 2023; 16(12):4359. https://doi.org/10.3390/ma16124359
Chicago/Turabian StyleLiu, Yiming, Tian Qin, Pengxian Wang, Menglei Yuan, Qiongguang Li, and Shaojie Feng. 2023. "Challenges and Solutions for Low-Temperature Lithium–Sulfur Batteries: A Review" Materials 16, no. 12: 4359. https://doi.org/10.3390/ma16124359
APA StyleLiu, Y., Qin, T., Wang, P., Yuan, M., Li, Q., & Feng, S. (2023). Challenges and Solutions for Low-Temperature Lithium–Sulfur Batteries: A Review. Materials, 16(12), 4359. https://doi.org/10.3390/ma16124359