On the Symmetry, Electronic Properties, and Possible Metallic States in NASICON-Structured A4V2(PO4)3 (A = Li, Na, K) Phosphates
Abstract
:1. Introduction
2. Computational Methodology
3. Results and Discussion
3.1. Group Theoretical Approach to NASICON Structures
3.2. Analysis of the Low Energy Structures
3.3. Electronic Structure Analysis
4. Conclusions
- NASICON-structured Li4V2(PO4)3 and Na4V2(PO4)3 with fully occupied alkali metal sites adopt monoclinic structures with SGs and averaged vanadium OS V in the ground state. On the other hand, K4V2(PO4)3 adopted a monoclinic structure with a SG, which was stabilized by the mixed vanadium oxidation state V/V in the ground state.
- Li4V2(PO4)3 and Na4V2(PO4)3 possesed small band gaps of 0.13 eV and 0.20 eV in the ground state, respectively. However, monoclinic to rhombohedral symmetry increases closed the band gap and demonstrated the possibility of a metallic state in both the V averaged (in the SG for Na4V2(PO4)3 and the and SGs for Li4V2(PO4)3) and V/V mixed vanadium oxidation states. In contrast, K4V2(PO4)3 retained a small band gap in all studied structures with different symmetries and vanadium OSs.
- The band gap in these structures was of a d-d character, independent of the symmetry or vanadium oxidation state. In the case of mixed vanadium oxidation, it was due to an empty band formed by the V states.
- The special configuration of high symmetry Na3V2(PO4)3 with Na atoms removed from all sites but completely occupied sites as in initial Na4V2(PO4)3 also showed the appearance of a metallic state.
- The orbital-projected DOS analysis for a rhombohedral symmetry shows that, in an averaged oxidation state for Na4V2(PO4)3, the band around the Fermi level is mostly comprised of two-fold degenerate E orbitals, whereas, in the mixed OS, it is mostly the non-degenerate A1 orbitals contributing to the top of the valence band. Moreover, the separation between the A1 orbitals of V and V states led to the opening of a band gap.
- These results might contribute to a fundamental understanding of the crystal and electronic structure, as well as provide valuable guidance for researchers performing experimental investigations on this important class of materials.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DFT | Density Functional Theory |
LCAO | Linear Combination of Atomic Orbitals |
OS | Oxidation State |
SG | Space Group |
WC | Wu–Cohen |
NVP | Na3V2(PO4)3 |
References
- Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.W.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef]
- Masquelier, C.; Croguennec, L. Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries. Chem. Rev. 2013, 113, 6552–6591. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.; Hu, Y.S.; Ji, X.; Chen, W. NASICON-Structured Materials for Energy Storage. Adv. Mater. 2017, 29, 1601925. [Google Scholar] [CrossRef]
- Chen, S.; Wu, C.; Shen, L.; Zhu, C.; Huang, Y.; Xi, K.; Maier, J.; Yu, Y. Challenges and Perspectives for NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries. Adv. Mater. 2017, 29, 1700431. [Google Scholar] [CrossRef]
- Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K.B.; Carretero-Gonzalez, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901. [Google Scholar] [CrossRef]
- Slater, M.D.; Kim, D.; Lee, E.; Johnson, C.S. Sodium-Ion Batteries. Adv. Funct. Mater. 2013, 23, 947–958. [Google Scholar] [CrossRef]
- Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L.F. The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage. Angew. Chem.-Int. Edit. 2015, 54, 3431–3448. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on Sodium-Ion Batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef]
- Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angew. Chem.-Int. Ed. 2018, 57, 102–120. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Moh, K.; Presser, V. From capacitive deionization to desalination batteries and desalination fuel cells. Curr. Opin. Electrochem. 2021, 29, 100758. [Google Scholar] [CrossRef]
- Kabbour, H.; Coillot, D.; Colmont, M.; Masquelier, C.; Mentre, O. α-Na3M2(PO4)3 (M = Ti, Fe): Absolute Cationic Ordering in NASICON-Type Phases. J. Am. Chem. Soc. 2011, 133, 11900–11903. [Google Scholar] [CrossRef] [PubMed]
- Chotard, J.N.; Rousse, G.; David, R.; Mentré, O.; Courty, M.; Masquelier, C. Discovery of a Sodium-Ordered Form of Na3V2(PO4)3 below Ambient Temperature. Chem. Mater. 2015, 27, 5982–5987. [Google Scholar] [CrossRef]
- Gryaznov, D.; Stauffer, S.K.; Kotomin, E.A.; Vilčiauskas, L. Hybrid density functional theoretical study of NASICON-type NaxTi2(PO4)3 (x = 1–4). Phys. Chem. Chem. Phys. 2020, 22, 11861–11870. [Google Scholar] [CrossRef]
- Snarskis, G.; Pilipavičius, J.; Gryaznov, D.; Mikoliunaitė, L.; Vilčiauskas, L. Peculiarities of Phase Formation in Mn-Based Na SuperIonic Conductor (NaSICon) Systems: The Case of Na1+2xMnxTi2−x(PO4)3 (0.0 ⩽ x ⩽ 1.5). Chem. Mater. 2021, 33, 8394–8403. [Google Scholar] [CrossRef]
- Park, S.; Wang, Z.; Deng, Z.; Moog, I.; Canepa, P.; Fauth, F.; Carlier, D.; Croguennec, L.; Masquelier, C.; Chotard, J.N. Crystal Structure of Na2V2(PO4)3, an Intriguing Phase Spotted in the Na3V2(PO4)3–Na1V2 (PO4)3 System. Chem. Mater. 2021, 34, 451–462. [Google Scholar] [CrossRef]
- Wang, Z.; Park, S.; Deng, Z.; Carlier, D.; Chotard, J.N.; Croguennec, L.; Gautam, G.S.; Cheetham, A.K.; Masquelier, C.; Canepa, P. Phase stability and sodium-vacancy orderings in a NaSICON electrode. J. Mater. Chem. A 2022, 10, 209–217. [Google Scholar] [CrossRef]
- Nagai, T.; Mochizuki, Y.; Yoshida, S.; Kimura, T. Chemical Aspect of Displacive-Type Ferroaxial Phase Transition from Perspective of Second-Order Jahn–Teller Effect: NASICON Systems as an Example. J. Am. Chem. Soc. 2023, 145, 8090–8098. [Google Scholar] [CrossRef]
- Yin, S.; Grondey, H.; Strobel, P.; Huang, H.; Nazar, L. Charge ordering in lithium vanadium phosphates: Electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 2003, 125, 326–327. [Google Scholar] [CrossRef]
- Dovesi, R.; Saunders, V.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N.; Bush, I.; et al. CRYSTAL17 User’s Manual; University of Torino: Torino, Italy, 2017. [Google Scholar]
- Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C.M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; et al. Quantum-mechanical condensed matter simulations with CRYSTAL. WIRE Comput. Mol. Sci. 2018, 8, e1360. [Google Scholar] [CrossRef]
- Peintinger, M.F.; Oliveira, D.V.; Bredow, T. Consistent gaussian basis sets of Triple-Zeta valence with polarization quality for solid-State Calculations. J. Comput. Chem. 2013, 34, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Vilela Oliveira, D.; Laun, J.; Peintinger, M.F.; Bredow, T. BSSE-correction scheme for consistent gaussian basis sets of double- and triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem. 2019, 40, 2364–2376. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Franchini, C. Hybrid functionals applied to perovskites. J. Phys.-Condes. Matter. 2014, 26, 253202. [Google Scholar] [CrossRef] [PubMed]
- Bilc, D.I.; Orlando, R.; Shaltaf, R.; Rignanese, G.M.; Iniguez, J.; Ghosez, P. Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Phys. Rev. B 2008, 77, 165107. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Cohen, R.E. More accurate generalized gradient approximation for solids. Phys. Rev. B 2006, 73, 235116. [Google Scholar] [CrossRef] [Green Version]
- Aroyo, M.I.; Perez-Mato, J.M.; Capillas, C.; Kroumova, E.; Ivantchev, S.; Madariaga, G.; Kirov, A.; Wondratschek, H. Bilbao Crystallographic Server: I. Databases and crystallographic computing programs. Z. Für Krist.-Cryst. Mater. 2006, 221, 15–27. [Google Scholar] [CrossRef]
- Ivantchev, S.; Kroumova, E.; Madariaga, G.; Pérez-Mato, J.M.; Aroyo, M.I. SUBGROUPGRAPH: A Comput. Program Anal. Group—Relations Space Groups. J. Appl. Crystallogr. 2000, 33, 1190–1191. [Google Scholar] [CrossRef]
- Bilbao Crystallographic Server. 2023. Available online: https://www.cryst.ehu.es/ (accessed on 20 April 2023).
- Petrulevičienė, M.; Pilipavičius, J.; Juodkazytė, J.; Gryaznov, D.; Vilčiauskas, L. Electrochemical Performance of NASICON-structured Na3−xV2−xTix(PO4)3 (0.0 < x < 1.0) as aqueous Na-ion battery positive electrodes. Electrochim. Acta 2022, 424, 140580. [Google Scholar]
a/Å | c/Å | q/e | / | /eV | /eV /Cell | |
---|---|---|---|---|---|---|
/Average OS: V | ||||||
Li4V2(PO4)3 | 8.96 | 19.58 | +1.17 | 2.56 | 0 | 0.597 |
Na4V2(PO4)3 | 8.97 | 21.15 | +1.19 | 2.57 | 0 | 0.595 |
K4V2(PO4)3 | 9.20 | 22.33 | +1.21 | 2.55 | 0.35 | 0.224 |
/Average OS: V | ||||||
Li4V2(PO4)3 | 8.97 | 19.49 | V +1.18 | V 2.53 | 0 | 0.352 |
V +1.17 | V 2.56 | |||||
Na4V2(PO4)3 | 8.97 | 21.17 | V +1.20 | V 2.53 | 0.41 | 0.141 |
V +1.20 | V 2.53 | |||||
K4V2(PO4)3 | 9.20 | 22.33 | V +1.21 | V 2.55 | 0.35 | 0.224 |
V +1.21 | V 2.55 | |||||
/Mixed OS: V/V | ||||||
Li4V2(PO4)3 | 8.97 | 19.58 | V +1.10 | V 2.99 | 0 | 0.940 |
V +1.20 | V 2.11 | |||||
Na4V2(PO4)3 | 8.98 | 21.15 | V +1.14 | V 3.00 | 0 | 0.825 |
V +1.18 | V 2.11 | |||||
K4V2(PO4)3 | 9.22 | 22.38 | V +1.15 | V 3.00 | 0.55 | 0.153 |
V +1.23 | V 2.04 | |||||
/Average OS: V | ||||||
Li4V2(PO4)3 | 8.96 | 19.60 | +1.18 | 2.55 | 0.20 | 0 |
b = 9.96 | ||||||
Na4V2(PO4)3 | 8.96 | 21.18 | +1.19 | 2.55 | 0.13 | 0 |
b = 9.97 | ||||||
K4V2(PO4)3 | 9.24 | 22.31 | +1.20 | 2.56 | 0.17 | 0.200 |
b = 9.20 | ||||||
/Mixed OS: V/V | ||||||
K4V2(PO4)3 | 9.21 | 22.34 | V +1.15 | V 3.00 | 0.76 | 0 |
V +1.22 | V 2.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gryaznov, D.; Vilčiauskas, L. On the Symmetry, Electronic Properties, and Possible Metallic States in NASICON-Structured A4V2(PO4)3 (A = Li, Na, K) Phosphates. Materials 2023, 16, 4361. https://doi.org/10.3390/ma16124361
Gryaznov D, Vilčiauskas L. On the Symmetry, Electronic Properties, and Possible Metallic States in NASICON-Structured A4V2(PO4)3 (A = Li, Na, K) Phosphates. Materials. 2023; 16(12):4361. https://doi.org/10.3390/ma16124361
Chicago/Turabian StyleGryaznov, Denis, and Linas Vilčiauskas. 2023. "On the Symmetry, Electronic Properties, and Possible Metallic States in NASICON-Structured A4V2(PO4)3 (A = Li, Na, K) Phosphates" Materials 16, no. 12: 4361. https://doi.org/10.3390/ma16124361
APA StyleGryaznov, D., & Vilčiauskas, L. (2023). On the Symmetry, Electronic Properties, and Possible Metallic States in NASICON-Structured A4V2(PO4)3 (A = Li, Na, K) Phosphates. Materials, 16(12), 4361. https://doi.org/10.3390/ma16124361