One-Step Microwave-Assisted Hydrothermal Preparation of Zn-ZnO(Nw)-rGO Electrodes for Supercapacitor Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Development of Hybrid Electrodes
2.3. Hybrid Electrode Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Min, S.; Zhao, C.; Chen, G.; Qian, X. One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors. Electrochim. Acta 2014, 115, 155–164. [Google Scholar] [CrossRef]
- Li, Z.; Liu, P.; Yun, G.; Shi, K.; Lv, X.; Li, K.; Jianhua, X.; Yang, B. 3D (Three-dimensional) sandwich-structured of ZnO (zinc oxide)/rGO (reduced graphene oxide)/ZnO for high performance supercapacitors. Energy 2014, 69, 266–271. [Google Scholar] [CrossRef]
- Purkait, T.; Singh, G.; Kumar, D.; Singh, M.; Sundar Dey, R. High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci. Rep. 2018, 8, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.; Jeong, J.R.; Lee, J.; Hwa Lee, S.; Kim, S.Y.; Kim, M.J.; Nah, J.; Lee, M.H. In situ formation of graphene/metal oxide composites for high-energy microsupercapacitors. NPG Asia Mater. 2020, 12, 50. [Google Scholar] [CrossRef]
- Wu, L.; Li, Q.; Yang, C.; Ma, X.; Zhang, Z.; Cui, X. Constructing a novel TiO2/γ-graphene heterojunction for enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6, 20947–20955. [Google Scholar] [CrossRef]
- Olowoyo, J.O.; Kumar, M.; Singh, B.; Oninla, V.O.; Babalola, J.O.; Valdes, H.; Vorontsov, A.V.; Kumar, U. Self-assembled reduced graphene oxide-TiO2 nanocomposites: Synthesis, DFTB+ calculations, and enhanced photocatalytic reduction of CO2 to methanol. Carbon 2019, 147, 385–397. [Google Scholar] [CrossRef]
- Du, S.; Sun, J.; Wu, P. Preparation, characterization and lubrication performances of graphene oxide-TiO2 nanofluid in rolling strips. Carbon 2018, 140, 338–351. [Google Scholar] [CrossRef]
- Isacfranklin, M.; Yuvakkumar, R.; Ravi, G.; Hong, S.I.; Velauthapillai, D.; Thambidurai, M.; Dang, C.; Algarni, T.S.; Al-Mohaimeed, A.M. Heterostructured SmCoO3/rGO composite for high-energy hybrid supercapacitors. Carbon 2021, 172, 613–623. [Google Scholar] [CrossRef]
- Ton, N.N.T.; Dao, A.T.N.; Kato, K.; Ikenaga, T.; Trinh, D.X.; Taniike, T. One-pot synthesis of TiO2/graphene nanocomposites for excellent visible light photocatalysis based on chemical exfoliation method. Carbon 2018, 133, 109–117. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; He, X.; Zhang, X.; Yan, B.O.; Hou, X.U.; Du, L.; Placke, T.; Winter, M.; Li, J. A three-dimensional TiO2-Graphene architecture with superior Li ion and Na ion storage performance. J. Power Sources 2020, 46, 228129. [Google Scholar] [CrossRef]
- Zhu, C.; Dong, X.; Mei, X.; Gao, M.; Wang, K.; Zhao, D. General fabrication of metal oxide nanoparticles modified graphene for supercapacitors by laser ablation. Appl. Surf. Sci. 2021, 568, 150978. [Google Scholar] [CrossRef]
- Ma, L.; Shen, X.; Ji, Z.; Zhu, G.; Zhou, H. Ag nanoparticles decorated MnO2/reduced graphene oxide as advanced electrode materials for supercapacitors. Chem. Eng. J. 2014, 252, 95–103. [Google Scholar] [CrossRef]
- Vanitha, M.; Keerthi, P.; Cao, N.; Balasubramanian, N. Ag nanocrystals anchored CeO2 /graphene nanocomposite for enhanced supercapacitor applications. J. Alloys Compd. 2015, 644, 534–544. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Gao, Z.; Ma, H.L.; Wang, S.; Peng, J.; Li, J.; Zhai, M. A facile synthesis of platinum nanoparticle decorated graphene by one-step γ-ray induced reduction for high rate supercapacitors. J. Mater. Chem. C 2013, 1, 321–328. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Z.; Li, Z.; Wang, B.; Yan, Y.; Liu, Q.; Mann, T.; Zhang, M.; Jiang, Z. Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties. J. Solid State Chem. 2011, 184, 1421–1427. [Google Scholar] [CrossRef]
- Nava, O.; Murrieta-Rico, F.N.; Martínez-Rosas, M.E.; Chinchillas-Chinchillas, M.J.; Garrafa-Galvez, H.E.; Vilchis-Nestor, A.R.; Luque, P.A. Evaluation of electrochemical properties of zinc oxide based semiconductor nanoparticles biosynthesized with Mentha spicata for optoelectronic applications. Mater. Lett. 2020, 275, 128101. [Google Scholar] [CrossRef]
- Li, G.; Ahmoum, H.; Liu, S.; Liu, S.; Su'ait, M.S.; Boughrara, M.; Kerouad, M.; Wang, Q. Theoretical insight into magnetic and thermoelectric properties of Au doped ZnO compounds using density functional theory. Phys. B Condens. Matter 2019, 562, 67–74. [Google Scholar] [CrossRef]
- Huang, J.; Yinb, Z.; Zheng, Q. Applications of ZnO in organic and hybrid solar cells. Energy Environ. Sci. 2011, 4, 3861–3877. [Google Scholar] [CrossRef]
- Mirzaeifard, Z.; Shariatinia, Z.; Jourshabani, M.; Darvishi, S.M.R. ZnO photocatalyst revisited: Effective photocatalytic degradation of emerging contaminants using S-doped ZnO nanoparticles under Visible Light Radiation. Ind. Eng. Chem. Res. 2020, 59, 15894–15911. [Google Scholar] [CrossRef]
- Franco, M.A.; Conti, P.P.; Andre, R.S.; Correa, D.S. A review on chemiresistive ZnO gas sensors. Sens. Actuators Rep. 2022, 4, 100100. [Google Scholar] [CrossRef]
- Romeiro, F.C.; Rodrigues, M.A.; Silva, L.A.; Catto, A.C.; Silva, L.F.; Longo, E.; Nossol, E.; Lima, R.C. rGO-ZnO nanocomposites for high electrocatalytic effect on water, oxidation obtained by microwave-hydrothermal method. Appl. Surf. Sci. 2017, 423, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Jayachandiran, J.; Yesuraj, J.; Arivanandhan, M.; Raja, A.; Suthanthiraraj, S.A.; Jayavel, R.; Nedumaran, D. Synthesis and Electrochemical Studies of rGO/ZnO Nanocomposite for Supercapacitor Application. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2046–2055. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Li, Y.F.; Yang, Y.G.; Wen, Y.F.; Wang, M.Z. A one-pot method for producing ZnO-graphene oxide for supercapacitors. Scr. Mater. 2013, 69, 301–304. [Google Scholar] [CrossRef]
- Buldu-Akturk, M.; Toufani, M.; Tufani, A.; Erdem, E. ZnO and reduced graphene oxide electrodes for all-in-one supercapacitor devices. Nanoscale 2022, 14, 3269–3278. [Google Scholar] [CrossRef]
- Jian, Z.; Zhang, S.; Guan, X.; Li, J.; Li, H.; Wang, W.; Xing, Y.; Xu, H. ZnO quantum dot-modified rGO with enhanced electrochemical performance for lithium–sulfur batteries. RSC Adv. 2020, 10, 32966–32975. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Velmurugan, P.; Ravi, A.V.; Oh, B.T. Green and hydrothermal assembly of reduced graphene oxide (rGO)-coated ZnO and Fe hybrid nanocomposite for the removal of nitrate and phosphate. Environ. Chem. Ecotox. 2020, 2, 141–149. [Google Scholar] [CrossRef]
- Luo, Q.P.; Yu, X.Y.; Lei, B.X.; Chen, H.Y.; Kuang, D.B.; Su, C.Y. Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J. Phys. Chem. C 2012, 116, 8111–8117. [Google Scholar] [CrossRef]
- Guo, G.; Huang, L.; Chang, Q.; Ji, L.; Liu, Y.; Xie, Y.; Shi, W.; Jia, N. Sandwiched nanoarchitecture of reduced graphene oxide/ZnO nanorods/reduced graphene oxide on flexible PET substrate for supercapacitor. Appl. Phys. Lett. 2011, 99, 083111. [Google Scholar] [CrossRef]
- Merlano, A.S.; Pérez, F.R.; Cabanzo, R.; Mejía, E.; Hoyos, L.M.; Salazar, Á. Chemical and morphological analysis of formation of rGO/ZnO composite obtained by microwave-assisted hydrothermal method. J. Phys. Conf. Ser. 2020, 1541, 012015. [Google Scholar] [CrossRef]
- Lu, T.; Pan, L.; Li, H.; Zhu, G.; Lv, T.; Liu, X.; Sun, Z.; Chen, T.; Chua, D.H.C. Microwave-assisted synthesis of graphene–ZnO nanocomposite for electrochemical supercapacitors. J. Alloys Compd. 2011, 509, 5488–5492. [Google Scholar] [CrossRef]
- Gang, R.; Xu, L.; Xia, Y.; Zhang, L.; Wang, S.; Li, R. Facile one-step production of 2D/2D ZnO/rGO nanocomposites under microwave irradiation for photocatalytic removal of tetracycline. ACS Omega 2021, 6, 3831–3839. [Google Scholar] [CrossRef] [PubMed]
- Lazau, C.; Nicolaescu, M.; Orha, C.; Pop, A.; Caprarescu, S.; Bandas, C. In Situ Deposition of Reduced Graphene Oxide on Ti Foil by a Facile, Microwave-Assisted Hydrothermal Method. Coatings 2022, 12, 1805. [Google Scholar] [CrossRef]
- Nicolaescu, M.; Bandas, C.; Orha, C.; Purcar, V.; Lazau, C. Development of the Zn-ZnO(Nw)@CuMnO2 Heterojunction by Low Temperature Zn Foil Oxidation for Gas Sensor Fabrication. Coatings 2022, 12, 1630. [Google Scholar] [CrossRef]
- Li, Y.; Huan, K.; Deng, D.; Tang, L.; Wang, J.; Luo, L. Facile Synthesis of ZnMn2O4@rGO Microspheres for Ultrasensitive Electrochemical Detection of Hydrogen Peroxide from Human Breast Cancer Cells. ACS Appl. Mater. Interfaces 2019, 12, 3430–3437. [Google Scholar] [CrossRef]
- Peng, C.; Guo, J.; Yang, W.; Shi, C.; Liu, M.; Zheng, Y.; Xu, J.; Chen, P.; Huang, T.; Yang, Y. Synthesis of three-dimensional flower-like hierarchical ZnO nanostructure and its enhanced acetone gas sensing properties. J. Alloys Compd. 2016, 654, 371–378. [Google Scholar] [CrossRef]
- Rokhsat, E.; Akhavan, O. Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Appl. Surf. Sci. 2016, 371, 590–595. [Google Scholar] [CrossRef]
- Rahmanifar, M.S.; Hemmati, M.; Noori, A.; El-Kady, M.F.; Mousavi, M.F.; Kaner, R.B. Asymmetric supercapacitors: An alternative to activated carbon negative electrodes based on earth abundant elements. Mater. Today Energy 2019, 12, 26–36. [Google Scholar] [CrossRef]
- Jiao, S.; Li, T.; Xiong, C.; Tang, C.; Dang, A.; Li, H.; Zhao, T. A facile method of preparing the asymmetric supercapacitor with two electrodes assembled on a sheet of filter paper. Nanomaterials 2019, 9, 1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azman, N.H.N.; Mamat Mat Nazir, M.S.; Ngee, L.H.; Sulaiman, Y. Graphene-based ternary composites for supercapacitors. Int. J. Energy Res. 2018, 42, 2104–2116. [Google Scholar] [CrossRef]
- Schoetz, T.; Gordon, L.W.; Ivanov, S.; Bund, A.; Mandler, D.; Messinger, R.J. Disentangling faradaic, pseudocapacitive, and capacitive charge storage: A tutorial for the characterization of batteries, supercapacitors, and hybrid systems. Electrochim. Acta 2022, 412, 140072. [Google Scholar] [CrossRef]
- Sun, J.; Guo, L.; Sun, X.; Zhang, J.; Hou, L.; Li, L.; Yang, S.; Yuan, C. One-dimensional nanostructured pseudocapacitive materials: Design, synthesis and applications in supercapacitors. Batter. Supercaps 2019, 2, 820–841. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. Graphene/reduced graphene oxide-carbon nanotubes composite electrodes: From capacitive to battery-type behaviour. Nanomaterials 2021, 11, 1240. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Han, G. One-step fabrication of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes composite films for high-performance supercapacitors. Electrochim. Acta 2016, 192, 448–455. [Google Scholar] [CrossRef]
- Dong, Y.; Xing, L.; Chen, K.; Wu, X. Porous alpha-Fe2O3@C nanowire arrays as flexible supercapacitors electrode materials with excellent electrochemical performances. Nanomaterials 2018, 8, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Youssry, S.M.; Abdel-Galeil, M.M.; Matsuda, A. One-pot synthesis of reduced graphene oxide nanosheets anchored ZnO nanoparticles via microwave approach for electrochemical performance as supercapacitor electrode. J. Mater. Sci. Mater. Electron. 2020, 31, 15456–15465. [Google Scholar] [CrossRef]
- Nicolaescu, M.; Vajda, M.; Lazau, C.; Orha, C.; Bandas, C.; Serban, V.-A.; Codrean, C. Fabrication of flexible supercapacitor electrode materials by chemical oxidation of iron-based amorphous ribbons. Materials 2023, 16, 2820. [Google Scholar] [CrossRef]
- Sun, B.; Yao, M.; Chen, Y.; Tang, X.; Hu, W.; Pillai, S.C. Facile fabrication of flower-like γ-Fe2O3 @PPy from iron rust for high-performing asymmetric supercapacitors. J. Alloys Compd. 2022, 922, 166055. [Google Scholar] [CrossRef]
- Xiao, X.; Peng, X.; Jin, H.; Li, T.; Zhang, C.; Gao, B.; Hu, B.; Huo, K.; Zhou, J. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv Mater. 2013, 25, 5091–5097. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H.; Shu, D.; He, C.; Nan, J. Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material. J. Phys. Chem. Solids 2009, 70, 495–500. [Google Scholar] [CrossRef]
- Tong, H.; Zhu, J.; Chen, J.; Han, Y.; Yang, S.; Ding, B.; Zhang, X. Electrochemical reduction of graphene oxide and its electrochemical capacitive performance. J. Solid State Electrochem. 2013, 17, 2857–2863. [Google Scholar] [CrossRef]
- Guo, M.; Geng, W.-C.; Liu, C.; Gu, J.; Zhang, Z.; Tang, Y. Ultrahigh Areal Capacitance of Flexible MXene Electrodes: Electrostatic and Steric Effects of Terminations. Chem. Mater. 2020, 32, 8257–8265. [Google Scholar] [CrossRef]
- Ghasemi, F.; Jalali, M.; Abdollahi, A.; Mohammadi, S.; Sanaee, Z.; Mohajerzadeh, S. A high performance supercapacitor based on decoration of MoS2/reduced graphene oxide with NiO nanoparticles. RSC Adv. 2017, 7, 52772–52781. [Google Scholar] [CrossRef] [Green Version]
- Tseng, C.H.; Lin, H.H.; Hung, C.W.; Cheng, I.C.; Luo, S.C.; Cheng, I.C.; Chen, J.Z. Electropolymerized Poly(3,4-ethylenedioxythiophene)/Screen-Printed Reduced Graphene Oxide-Chitosan Bilayer Electrodes for Flexible Supercapacitors. ACS Omega 2021, 6, 16455–16464. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; Rajasekhara Reddy, G.; Rajesh, M.; Babu, P.R.; Shanmugam, G.; Sushma, N.J.; Pratap Reddy, M.S.; Deva Prasad Raju, B.; Mallikarjuna, K. Electrochemical Performance of 2D-Hierarchical Sheet-Like ZnCo2O4 Microstructures for Supercapacitor Applications. Crystals 2020, 10, 566. [Google Scholar] [CrossRef]
- Amiri, M.H.; Namdar, N.; Mashayekhi, A.; Ghasemi, F.; Sanaee, Z.; Mohajerzadeh, S. Flexible micro supercapacitors based on laser-scribed graphene/ZnO nanocomposite. J. Nanopart. Res. 2016, 18, 237. [Google Scholar] [CrossRef]
- Chang, L.; Wei, W.; Sun, K.; Hu, Y.H. 3D flower-structured graphene from CO2 for supercapacitors with ultrahigh areal capacitance at high current density. J. Mater. Chem. A 2015, 3, 10183–10187. [Google Scholar] [CrossRef]
- Zhai, Z.; You, Y.; Ma, L.; Jiang, D.; Li, F.; Yuan, H.; Zheng, M.; Shen, W. One-Step In Situ Self-Assembly of Cypress Leaf-Like Cu(OH)2 Nanostructure/Graphene Nanosheets Composite with Excellent Cycling Stability for Supercapacitors. Nanoscale Res. Lett. 2019, 14, 167. [Google Scholar] [CrossRef]
- Chang, J.H.; Chen, S.Y.; Kuo, Y.L.; Yang, C.R.; Chen, J.Z. Carbon Dioxide Tornado-Type Atmospheric-Pressure-Plasma-Jet-Processed rGO-SnO2 Nanocomposites for Symmetric Supercapacitors. Materials 2021, 14, 2777. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Z.; Yun, G.; Shi, K.; Lv, X.; Yang, B. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites. Nanoscale Res. Lett. 2013, 8, 473. [Google Scholar] [CrossRef] [Green Version]
- Gund, G.S.; Dubal, D.P.; Chodankar, N.R.; Cho, J.Y.; Gomez-Romero, P.; Park, C.; Lokhande, C.D. Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel. Sci. Rep. 2015, 5, 12454. [Google Scholar] [CrossRef] [Green Version]
Materials | Structure | Specific Capacitance (mF cm−2) | Scan Rate (mV s−1) | Specific Capacitance (mF cm−2) | Current Density | References |
---|---|---|---|---|---|---|
NiO/MoS2/rGO | Electrode | 7.38 | 25 | - | - | [52] |
PPy-GO/CNT | Electrode | 143.6 | 10 | 99 | 1.0 mA cm−2 | [43] |
rGO-CS | Electrode | 25.39 | 2 | 10.61 | 0.5 mA cm−2 | [53] |
PEDOT/rGO-CS | Electrode | 1073.67 | 2 | 584 | 0.5 mA cm−2 | [53] |
Sheet like ZnCO2O4 | Electrode | - | - | 16.13 | 10 µA cm−2 | [54] |
ZnO/rGO | Nano composite | - | - | 0.022 | 1 mA cm−2 | [55] |
CFG | Electrode | - | - | 1160 | 1 A g−1 | [56] |
Cu(OH)2/ graphene | Composite | - | - | 317 | 1 mA cm−2 | [57] |
rGO-SnO2 SCs | Composite | - | - | 37.17 | 0.25 mA cm−2 | [58] |
Ti3C2Tx | Electrode | 1399.0 | 1 | - | - | [51] |
Zn-ZnO(Nw)-rGO | Electrode | 395.79 | 5 | 145.59 | 2 mA cm−2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandas, C.; Nicolaescu, M.; Popescu, M.I.; Orha, C.; Căprărescu, S.; Lazau, C. One-Step Microwave-Assisted Hydrothermal Preparation of Zn-ZnO(Nw)-rGO Electrodes for Supercapacitor Applications. Materials 2023, 16, 4536. https://doi.org/10.3390/ma16134536
Bandas C, Nicolaescu M, Popescu MI, Orha C, Căprărescu S, Lazau C. One-Step Microwave-Assisted Hydrothermal Preparation of Zn-ZnO(Nw)-rGO Electrodes for Supercapacitor Applications. Materials. 2023; 16(13):4536. https://doi.org/10.3390/ma16134536
Chicago/Turabian StyleBandas, Cornelia, Mircea Nicolaescu, Mina Ionela Popescu, Corina Orha, Simona Căprărescu, and Carmen Lazau. 2023. "One-Step Microwave-Assisted Hydrothermal Preparation of Zn-ZnO(Nw)-rGO Electrodes for Supercapacitor Applications" Materials 16, no. 13: 4536. https://doi.org/10.3390/ma16134536
APA StyleBandas, C., Nicolaescu, M., Popescu, M. I., Orha, C., Căprărescu, S., & Lazau, C. (2023). One-Step Microwave-Assisted Hydrothermal Preparation of Zn-ZnO(Nw)-rGO Electrodes for Supercapacitor Applications. Materials, 16(13), 4536. https://doi.org/10.3390/ma16134536