An Evaluation of the Mechanical Properties of a Hybrid Composite Containing Hydroxyapatite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bending Strength Test
2.2. Compression Strength Test
2.3. Diametral Compression Strength Test (DTS)
2.4. Impact Strength Test
2.5. Hardness Measurements
2.6. Tribological Wear Resistance Test
3. Results
3.1. Bending Strength Test
3.2. Compression Strength Test
3.3. Diametral Compression Strength Test (DTS)
3.4. Impact Strength Tests
3.5. Hardness Measurements
3.6. Impact Strength Tests Tribological Wear Resistance Test
4. Discussion
4.1. Bending Strength Test
4.2. Compression Strength
4.3. Diametral Compression Strength
4.4. Impact Strength
4.5. Hardness
4.6. Wear Resistance Test
5. Conclusions
- The content of hydroxyapatite (30 µm particle size) has a significant impact on the mechanical properties of a dental composite.
- The mechanical properties of the composite decreased as the amount of hydroxyapatite filler increased.
- Of the tested combinations, the best tribological properties were obtained by the composite containing 2% wt. hydroxyapatite.
- Research shows unequivocally that the addition of hydroxyapatite in the amount of up to 5% by weight is legitimate.
- HAp is an effective treatment for composites when applied at a low concentration. Further research is needed to identify an appropriate size of HAp particles that can be introduced into a composite, to adequately activate the surface and modification its composition.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rueggeberg, F.A.; Giannini, M.; Arriais, C.A.G.; Price, R.B.T. Light curing in dentistry and clinical implications: A literature review. Braz. Oral Res. 2017, 31, 64–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aminoroaya, A.; Esmaeely, N.R.; Nouri, K.S.; Panahi, P.; Das, O.; Ramakrishna, S. A Review of Dental Composites: Methods of Characterizations. ACS Biomater. Sci. Eng. 2020, 13, 3713–3744. [Google Scholar] [CrossRef] [PubMed]
- Rachmia, R.Y.; Rahman, F.S. Dental composite resin: A review. AIP Conf. Proc. 2019, 2193, 020011. [Google Scholar] [CrossRef]
- Bociong, K.; Szczesio, A.; Krasowski, M.; Sokołowski, J. The influence of filler amount on selected properties of new experimental resin dental composite. Open Chem. 2018, 16, 905–911. [Google Scholar] [CrossRef]
- Oivanen, M.; Keulemans, F.; Garoushi, S.; Vallittu, P.K.; Lassila, V.L. The effect of refractive index of fillers and polymer matrix on translucency and color matching of dental resin composite. Biomater. Investig. Dent. 2021, 8, 48–53. [Google Scholar] [CrossRef]
- Floyd, C.J.; Dickens, S.H. Network structure of Bis-GMA- and UDMA-based resin systems. Dent. Mater. 2006, 22, 1143–1149. [Google Scholar] [CrossRef]
- Pratap, B.; Kant, R.; Bhardwaj, B.; Nag, M. Resin based restorative dental materials: Characteristics and future perspectives. Jpn. Dent. Sci. Rev. 2019, 55, 126–138. [Google Scholar] [CrossRef]
- Domarecka, M.; Szczesio-Włodarczyk, A.; Krasowski, M.; Fronczek, M.; Gozdek, T.; Sokołowski, J.; Bociong, K.A. Comparative Study of the Mechanical Properties of Selected Dental Composites with a Dual-Curing System with Light-Curing Composites. Coatings 2021, 11, 1255. [Google Scholar] [CrossRef]
- Jung, M.; Sehr, K.; Klimek, J. Surface Texture of Four Nanofilled and One Hybrid Composite After Finishing. Laboratory research. Oper. Dent. 2007, 32, 45–52. [Google Scholar] [CrossRef]
- Bohner, M. Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Int. J. Care Inj. 2000, 31, 37–47. [Google Scholar] [CrossRef]
- Szcześ, A.; Hołysz, L.; Chibowski, E. Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interface Sci. 2017, 249, 321–330. [Google Scholar] [CrossRef]
- Lett, J.A.; Sundareswari, M.; Ravichandran, K. Porous hydroxyapatite scaffolds for orthopedic and dental applications—The role of binders. Mater. Today Proc. 2016, 3, 1672–1677. [Google Scholar]
- Liu, Z.; Liang, H.; Shi, T.; Xie, D.; Chen, R.; Han, X.; Shen, L.; Wang, C.; Tian, Z. Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility. Ceram. Int. 2019, 45, 11079–11086. [Google Scholar] [CrossRef]
- Sousa, A.C.; Biscaia, S.; Alvites, R.; Branquinho, M.; Lopes, B.; Sousa, P.; Valente, J.; Franco, M.; Santos, J.D.; Mendonça, C.; et al. Assessment of 3D-Printed Polycaprolactone, Hydroxyapatite Nanoparticles and Diacrylate Poly(ethylene glycol) Scaffolds for Bone Regeneration. Pharmaceutics 2022, 14, 2643. [Google Scholar] [CrossRef] [PubMed]
- Kenry; Liu, B. Recent Advances in Biodegradable Conducting Polymers and Their Biomedical Applications. Biomacromolecules 2018, 19, 1783–1803. [Google Scholar] [CrossRef] [PubMed]
- Bordea, I.; Candrea, S.; Alexescu, G.; Bran, S.; Baciut, M.; Baciut, G.; Lacaciu, O.; Dinu, C.; Todea, D. Nano-hydroxyapatite use in dentistry: A systematic review. Drug Metab. Rev. 2020, 52, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V. Calcium orthophosphates in dentistry. Sci. Mater. Med. 2013, 24, 1335–1363. [Google Scholar] [CrossRef] [PubMed]
- Lopes, B.; Sousa, P.; Alvites, R.; Branquinho, M.; Sousa, A.C.; Mendonça, C.; Atayde, L.M.; Luís, A.L.; Varejão, A.S.P.; Maurício, A.C. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int. J. Mol. Sci. 2022, 23, 918. [Google Scholar] [CrossRef]
- Santos, C.; Luklinska, Z.B.; Clarke, R.L.; Davy, K.W. Hydroxyapatite as a filler for dental composite materials: Mechanical pro-perties and in vitro bioactivity of composites. J. Mater. Sci. Mater. Med. 2001, 12, 565–573. [Google Scholar] [CrossRef]
- Domingo, C.; Arcıs, R.W.; Lopez-Macipe, A.; Osorio, R.; Rodrıguez-Clemente, R.; Murtra, J.; Fanovich, M.A.; Toledano, M. Dental composites reinforced with hydroxyapatite: Mechanical behavior and absorption/elution characteristics. J. Biomed. Mater. Res. 2001, 56, 297–305. [Google Scholar] [CrossRef]
- Elkassas, D.; Arafa, A. The innovative applications of therapeutic nanostructures in dentistry. Nanomedicine 2017, 13, 1543–1562. [Google Scholar] [CrossRef]
- Priyadarsini, S.; Mukherjee, S.; Mishra, M. Nanoparticles used in dentistry: A review. J. Oral Biol. Craniofac. Res. 2018, 8, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, D.; Wan, Z.; Yang, X.; Cai, Q. Dental resin composites with improved antibacterial and mineralization properties via incorporating zinc/strontium-doped hydroxyapatite as functional fillers. Biomed. Mater. 2022, 17, 045002. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, H.; Hong, L.; Zou, X.; Song, J.; Han, R.; Chen, J.; Yu, Y.; Liu, X.; Zhao, H.; et al. A Multifunctional Dental Resin Composite with Sr-N-Doped TiO2 and n-HA Fillers for Antibacterial and Mineralization Effects. Int. J. Mol. Sci. 2023, 24, 1274. [Google Scholar] [CrossRef]
- Ulian, G.; Moro, D.; Valdrè, G. Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective. Biomolecules 2021, 11, 72. [Google Scholar] [CrossRef]
- Jardim, R.N.; Rocha, A.A.; Rossi, A.M.; de Almeida Neves, A.; Portela, M.B.; Lopes, R.T.; Moreira da Silva, E. Fabrication and characterization of remineralizing dental composites containing hydroxyapatite nanoparticles. J. Mech. Behav. Biomed. Mater. 2020, 109, 103817. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Chen, J.; Liu, K.; Xing, H.; Song, C. Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Compos. Part B Eng. 2021, 215, 108790. [Google Scholar] [CrossRef]
- Alatawi, R.A.S.; Elsayed, N.H.; Mohamed, W.S. Influence of hydroxyapatite nanoparticles on the properties of glass ionomer cement. J. Mater. Res. Technol. 2019, 8, 344–349. [Google Scholar] [CrossRef]
- Pagano, S.; Chieruzzi, M.; Balloni, S.; Lombardo, G.; Torre, L.; Bodo, M.; Cianetti, S.; Marinucci, L. Biological, thermal and mechanical characterization of modified glass ionomer cements: The role of nanohydroxyapatite, ciprofloxacin and zinc l-carnosine. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 94, 76–85. [Google Scholar] [CrossRef]
- Balhuc, S.; Campian, R.; Labunet, A.; Negucioiu, M.; Buduru, S.; Kui, A. Dental Applications of Systems Based on Hydroxyapatite Nanoparticles—An Evidence-Based Update. Crystals 2021, 11, 674. [Google Scholar] [CrossRef]
- EN ISO 4049;2009; Dentistry–Polymer-Based Restorative Materials. ISO: Geneva, Switzerland, 2009.
- ASTM G133-05(2010); Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear. ISO: Geneva, Switzerland, 2010.
- PN-EN ISO 868:2003; Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). ISO: Geneva, Switzerland, 2003.
- PN-EN ISO 604; Plastics—Determination of Compressive Properties 2002. ISO: Geneva, Switzerland, 2002.
- PN-EN ISO 179-2:2020-12; Plastics—Determination of Charpy Impact Properties. ISO: Geneva, Switzerland, 2020.
- ASTM D2240; Standard Test Method for Rubber Property—Durometer Hardness. ISO: Geneva, Switzerland, 2017.
- Banaszek, K.; Klimek, L. Ti(C, N) as Barrier Coatings. Coatings 2019, 9, 432. [Google Scholar] [CrossRef] [Green Version]
- Dziedzic, K.; Zubrzycka-Wróbel, J. Research on tribological properties of dental composite materials. Adv. Sci. Technol. Res. J. 2016, 10, 144–149. [Google Scholar] [CrossRef]
- Sajewicz, E. On evaluation of wear resistance of tooth enamel and dental materials. Wear 2006, 260, 1256–1261. [Google Scholar] [CrossRef]
- Chen, L.; Yu, Q.; Wang, Y.; Li, H. BisGMA/TEGDMA dental composite containing high aspect-ratio hydroxyapatite nanofibers. Dent. Mater. 2012, 27, 1187–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadda, H.; Satapathy, B.K.; Patnaik, A.; Ray, A.R. Mechanistic interpretations of fracture toughness and correlations to wear behavior of hydroxyapatite and silica/hydroxyapatite filled bis-GMA/TEGDMA micro/hybrid dental restorative composites. Compos. Part B Eng. 2017, 130, 132–146. [Google Scholar] [CrossRef]
- Şahin, S.; Çehreli, M.C.; Yalçin, E. The influence of functional forces on the biomechanics of implant-supported prostheses—A review. J. Dent. 2002, 30, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Okulus, Z.; Voelkel, A. Mechanical properties of experimental composites with different calcium phosphates fillers. Mater. Sci. Eng. 2017, 78, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Kula, Z.; Klimek, L.; Kopacz, K.; Śmielak, B. Evaluation of the effect of the addition of hydroxyapatite on selected mechanical and tribological properties of a Flow type composite. Materials 2022, 15, 9016. [Google Scholar] [CrossRef]
- Akhtar, K.; Pervez, C.; Zubair, N.; Khalid, H. Calcium hydroxyapatite nanoparticles as a reinforcement filler in dental resin nanocomposite. J. Mater. Sci. Mater. Med. 2021, 32, 129. [Google Scholar] [CrossRef]
- Poorzandpoush, K.; Omrani, L.R.; Jafarnia, S.H.; Golkar, P.; Atai, M. Effect of addition of Nano hydroxyapatite particles on wear of resin modified glass ionomer by tooth brushing simulation. J. Clin. Exp. Dent. 2017, 9, 372–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Darvell, B.W. Mechanical properties of hydroxyapatite whisker-reinforced bis-GMA-based resin composites. Dent. Mater. 2012, 28, 824–830. [Google Scholar] [CrossRef]
- Bartoszewicz, M.; Rygiel, A.; Krzemiński, M.; Przondo-Mordarska, A. Penetration of a selected antibiotic and antiseptic into a biofilm formed on orthopedic steel implants. Ortop. Traumatol. Rehabil. 2007, 9, 310–318. [Google Scholar] [PubMed]
- Meena, A.; Singh Mali, H.; Patnaik, A.; Ranjan Kumar, S. Comparative investigation of physical, mechanical and thermomechanical characterization of dental composite filled with nanohydroxyapatite and mineral trioxide aggregate. e-Polymers 2017, 17, 311–319. [Google Scholar] [CrossRef]
- Lie, N.; Hilton, T.J.; Heintze, S.D.; Hickel, R.; Watts, D.C.; Silikas, N.; Stansbury, J.W.; Cadenaro, M.; Ferracane, J.L. Academy of Dental Materials Guidance-Resin Composites: Part I-Mechanical Properties. Dent. Mater. 2017, 33, 880–894. [Google Scholar]
- Skapska, A.; Komorek, Z.; Cierech, M.; Mierzwinska-Nastalska, E. Comparison of Mechanical Properties of a Self-Adhesive Composite Cement and a Heated Composite Material. Polymers 2022, 14, 2686. [Google Scholar] [CrossRef] [PubMed]
- Orczykowski, W.; Bieliński, D.M.; Anyszka, R.; Gozdek, T.; Klajn, K.; Celichowski, G.; Pędzich, Z.; Wojteczko, A. Fly Ash from Lignite Combustion as a Filler for Rubber Mixes—Part II: Chemical Valorisation of Fly Ash. Materials 2022, 15, 5979. [Google Scholar] [CrossRef]
- Jaroniek, M.; Czechowski, L.; Kaczmarek, Ł.; Warga, T.; Kubiak, T. A New Approach of Mathematical Analysis of Structure of Graphene as a Potential Material for Composites. Materials 2019, 12, 3918. [Google Scholar] [CrossRef] [Green Version]
- Vouvoudi, E.C.; Sideridou, I.D. Dynamic mechanical properties of dental nanofilled light-cured resin composites: Effect of food-simulating liquids. J. Mech. Behav. Biomed. Mater. 2012, 10, 87–96. [Google Scholar] [CrossRef]
- Mansour, S.F.; El-Dek, S.I.; Ahmed, M.K. Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nanocrystals. Sci. Rep. 2017, 7, 43202. [Google Scholar] [CrossRef] [Green Version]
Sample Symbol | Composite Type | Resin Type | Filler Content HAp [%] wag. | Filler Size HAp [µm] |
---|---|---|---|---|
HAp 0 | light-curing | UDMA | 0 | - |
HAp 2 | light-curing | UDMA | 2 | 30 |
HAp 5 | light-curing | UDMA | 5 | 30 |
HAp 8 | light-curing | UDMA | 8 | 30 |
Research Method | Devices | Dimensions and Shape of Samples |
---|---|---|
Bending Strength Test | UMT TriboLab Bruker multifunctional device (Bruker, Karlsruhe, Germany). | Rectangular beam with dimensions of 2 mm × 2 mm × 25 mm |
Compression Strength Test | Walter + Bai testing machine (Walter + Bai AG, Lohningen, Switzerland). | A cylinder with a diameter of 4 mm and a height of 6 mm |
Diametral Compression Strength Test (DTS) | Universal testing machine (Zwick/Roell, Ulm, Germany) | A disc with a diameter of 4 mm and a thickness of 2 mm |
Impact Strength Test | HIT 5.5p Zwick/Roeler impact hammer (Zwick/Roell, Ulm, Germany) | A cuboid with dimensions of 5 mm × 10 mm × 20 mm |
Hardness Measurements | Shore type D hardness tester (Elcometer Inc, Warren, MI, USA) | A cuboid with dimensions of 10 mm × 20 mm × 5 mm |
Tribological Wear Resistance Test | CSM Instruments Tribometer device (CSM Instruments, Freiburg, Germany) with the Tribox program installed, the Hommel Waveline 200 profilometer (ITA, Skórzewo, Poland). | A disc with a diameter of 21 mm and a thickness of 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimek, L.; Kopacz, K.; Śmielak, B.; Kula, Z. An Evaluation of the Mechanical Properties of a Hybrid Composite Containing Hydroxyapatite. Materials 2023, 16, 4548. https://doi.org/10.3390/ma16134548
Klimek L, Kopacz K, Śmielak B, Kula Z. An Evaluation of the Mechanical Properties of a Hybrid Composite Containing Hydroxyapatite. Materials. 2023; 16(13):4548. https://doi.org/10.3390/ma16134548
Chicago/Turabian StyleKlimek, Leszek, Karolina Kopacz, Beata Śmielak, and Zofia Kula. 2023. "An Evaluation of the Mechanical Properties of a Hybrid Composite Containing Hydroxyapatite" Materials 16, no. 13: 4548. https://doi.org/10.3390/ma16134548
APA StyleKlimek, L., Kopacz, K., Śmielak, B., & Kula, Z. (2023). An Evaluation of the Mechanical Properties of a Hybrid Composite Containing Hydroxyapatite. Materials, 16(13), 4548. https://doi.org/10.3390/ma16134548