High Performance GaN-Based Ultraviolet Photodetector via Te/Metal Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the GaN Film on Sapphire
2.2. Preparation of the Te Nanowires
2.3. Preparation of the Te/GaN Heterostructure
2.4. Characterization of Te NWs and GaN Film
2.5. Fabrication of Te/GaN Photodetectors
2.6. Characterizations of the PDs and Photovoltaic Measurements
2.7. DFT Calculations
3. Results and Discussion
Device | λ (nm) | Responsivity (mA/W) | Detectivity (Jones) | Rise/Fall Time | Ion/Ioff | EQE (%) | Ref. |
---|---|---|---|---|---|---|---|
Te-enhanced GaN | 365 | 4951 | 1.79 × 1014 | 100/270 ms | 2 × 103 | 169 | this work |
Te | 473 | 1.6 × 105 | − | 4.4/2.8 s | 1.6 | − | [56,57] |
GaN | 325 | 340 | 1.24 × 109 | 280/450 ms | − | − | [54] |
AlGaN | 254 | 3 | − | 136/15 ms | − | − | [58] |
PtSe2/GaN | 265 | 193 | 3.8 × 1014 | 45/102 μs | 1 × 108 | 90.3 | [59] |
MoS2/GaN | 265 | 187 | 2.34 × 1013 | 46/114 μs | 1 × 105 | 87.5 | [60] |
BiOCl/ZnO | 350 | 183 | − | 25.8/11.3 s | 798 | − | [61] |
WS2/GaN | 375 | 226 | 4 × 1014 | 7.3/420 µs | 180 | 74.4 | [62] |
ZnO/GaN | 325 | 2820 | 6.82 × 1013 | 6.9/6.4 ms | 7.36 × 106 | − | [63,64] |
MoO3/GaN | 370 | 187.5 | 4.34 × 1012 | 7.55 μs /1.67 ms | 1 × 105 | 62.8 | [65] |
Te/TiO2 | 350 | 84 | 3.7 × 109 | 0.772/1.492 s | − | − | [66] |
Te/ZnO | 387 | 300 | 4 × 1010 | 2.46/1.75 s | 100 | − | [66] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, B.; Shi, G. 3D Band Diagram and Photoexcitation of 2D-3D Semiconductor Heterojunctions. Nano Lett. 2015, 15, 5919–5925. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.T.; Qi, W.H. New materials and designs for 2D-based infrared photodetectors. Nano Res. 2023, 16, 3074–3103. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, B. Ultrabroadband MoS2 Photodetector with Spectral Response from 445 to 2717 nm. Adv. Mater. 2017, 29, 1605972. [Google Scholar] [CrossRef] [PubMed]
- Koppens, F.H.L.; Mueller, T. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, H. Scalable Growth of High-Quality Polycrystalline MoS2 Monolayers on SiO2 with Tunable Grain Sizes. ACS Nano 2014, 8, 6024–6030. [Google Scholar] [CrossRef]
- Wu, Y.C.; Ringe, S. A Two-Dimensional MoS2 Catalysis Transistor by Solid-State Ion Gating Manipulation and Adjustment (SIGMA). Nano Lett. 2019, 19, 7293–7300. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.R.; Gu, Y. Gas sensing devices based on two-dimensional materials: A review. Nanotechnology 2022, 33, 252001. [Google Scholar] [CrossRef]
- Xu, H.; Han, X.Y. High Detectivity and Transparent Few-Layer MoS2/Glassy-Graphene Heterostructure Photodetectors. Adv. Mater. 2018, 30, 1706561. [Google Scholar] [CrossRef]
- Mehew, J.D.; Unal, S. Fast and Highly Sensitive Ionic-Polymer-Gated WS2-Graphene Photodetectors. Adv. Mater. 2017, 29, 1700222. [Google Scholar] [CrossRef] [Green Version]
- Guobiao, L.; Shouqiang, H. Near-infrared responsive Z-scheme heterojunction with strong stability and ultra-high quantum efficiency constructed by lanthanide-doped glass. Appl. Catal. B Environ. 2022, 311, 121363. [Google Scholar]
- Yuchao, W.; Chao, C. High-Performance Visible to Near-Infrared Broadband Bi2O2Se Nanoribbon Photodetectors. Adv. Opt. Mater. 2022, 10, 2201396. [Google Scholar]
- Wenjuan, H.; Yue, Z. Encapsulation strategies on 2D materials for field effect transistors and photodetectors. Chinese Chem. Lett. 2022, 33, 2281–2290. [Google Scholar]
- Qiaowei, C.; Chen, Y. Label-free photoelectrochemical sensor based on 2D/2D ZnIn2S4/g-C3N4 heterojunction for the efficient and sensitive detection of bisphenol A. Chinese Chem. Lett. 2022, 33, 983–986. [Google Scholar]
- Ze, H.; Yaqun, X. Self-powered anti-interference photoelectrochemical immunosensor based on Au/ZIS/CIS heterojunction photocathode with zwitterionic peptide anchoring. Chinese Chem. Lett. 2022, 33, 4750–4755. [Google Scholar]
- Weilong, X.; Mengsi, N. Chemical vapor deposition growth of phase-selective inorganic lead halide perovskite films for sensitive photodetectors. Chinese Chem. Lett. 2021, 32, 489–492. [Google Scholar]
- Dungsheng, T.; Kengku, L. Few-Layer MoS2 with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano. 2013, 7, 3905–3911. [Google Scholar]
- Chao, X.; Xingtong, L. Recent Progress in Solar-Blind Deep-Ultraviolet Photodetectors Based on Inorganic Ultrawide Bandgap Semiconductors. Adv. Funct. Mater. 2019, 29, 180600. [Google Scholar]
- Ali, S.; Mark, W.K. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 2013, 4, 1643. [Google Scholar]
- Di, W.; Mengmeng, X. In Situ Fabrication of PdSe2/GaN Schottky Junction for Polarization-Sensitive Ultraviolet Photodetection with High Dichroic Ratio. ACS Nano. 2022, 16, 5545–5555. [Google Scholar]
- Cai, Q.; You, H.F. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light-Sci. Appl. 2021, 10, 10–94. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y. Design of 2D Layered PtSe2 Heterojunction for the High-Performance, Room-Temperature, Broadband, Infrared Photodetector. ACS Photonics 2018, 5, 3820–3827. [Google Scholar] [CrossRef]
- Longhui, Z.; Shenghuang, L. Fast, Self-Driven, Air-Stable, and Broadband Photodetector Based on Vertically Aligned PtSe2/GaAs Heterojunction. Adv. Funct. Mater. 2018, 28, 170597. [Google Scholar]
- Yiyu, Z.; Yixiong, Z. High Performance Flexible Visible-Blind Ultraviolet Photodetectors with Two-Dimensional Electron Gas Based on Unconventional Release Strategy. ACS Nano 2021, 15, 8386–8396. [Google Scholar]
- Shetty, A.; Roul, B. Temperature dependent electrical characterisation of Pt/HfO2/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes. AIP Adv. 2015, 5, 085313. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Rivera, C. Very narrow-band ultraviolet photodetection based on strained M-plane GaN films. Appl. Phys. Lett. 2007, 90, 091110. [Google Scholar] [CrossRef]
- Qian, H.S.; Yu, S.H. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 2006, 22, 3830–3835. [Google Scholar] [CrossRef]
- Li, Z.L.; Zheng, S.Q. Controlled synthesis of tellurium nanowires and nanotubes via a facile, efficient, and relatively green solution phase method. J. Mater. Chem. A 2013, 1, 15046–15052. [Google Scholar] [CrossRef]
- Kresse, G. Ab initio molecular dynamics for liquid metals. J. Non-Cryst. Solids 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Shen, C.F.; Liu, Y.H. Tellurene Photodetector with High Gain and Wide Bandwidth. ACS Nano 2020, 14, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.T.; Liu, P. High uniform growth of 4-inch GaN wafer via flow field optimization by HVPE. J. Cryst. Growth 2016, 445, 24–29. [Google Scholar] [CrossRef]
- Du, Y.; Qiu, G.; Wang, Y.; Si, M.; Xu, X.; Wu, W.; Ye, P.D. One-Dimensional van der Waals Material Tellurium: Raman Spectroscopy under Strain and Magneto-Transport. Nano Lett. 2017, 17, 3965–3973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianco, E.; Rao, R.H. Large-area ultrathin Te films with substrate-tunable orientation. Nanoscale 2020, 12, 12613–12622. [Google Scholar] [CrossRef]
- Chen, C.C.; Yeh, C.C. Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc. 2001, 123, 2791–2798. [Google Scholar] [CrossRef]
- Huang, X.C.; Guan, J.Q. Epitaxial Growth and Band Structure of Te Film on Graphene. Nano Lett. 2017, 17, 4619–4623. [Google Scholar] [CrossRef] [Green Version]
- Jinghui, W.; Padhraic, M. Review of using gallium nitride for ionizing radiation detection. Appl. Phys. Rev. 2015, 2, 031102. [Google Scholar]
- Mohammed, M.O. Tuning the electronic and optical properties of Type-I PbI2/α-tellurene van der Waals heterostructure via biaxial strain and external electric field. Appl. Surf. Sci. 2020, 508, 144824. [Google Scholar]
- Shen, J.; Jia, S. Elemental electrical switch enabling phase segregation-free operation. Science 2021, 374, 1390–1394. [Google Scholar] [CrossRef] [PubMed]
- Spies, M.; Polaczyński, J. Effect of the nanowire diameter on the linearity of the response of GaN-based heterostructured nanowire photodetectors. Nanotechnol. 2018, 29, 255204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabiee Golgir, H.; Li, D.W. Fast Growth of GaN Epilayers via Laser-Assisted Metal–Organic Chemical Vapor Deposition for Ultraviolet Photodetector Applications. ACS Appl. Mater. Interfaces 2017, 9, 21539–21547. [Google Scholar] [CrossRef] [PubMed]
- González-Posada, F.; Songmuang, R. Responsivity and photocurrent dynamics in single GaN nanowires. Phys. Status Solidi C 2012, 9, 642–645. [Google Scholar] [CrossRef]
- Wang, G.; Li, L. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance. Adv. Funct. Mater. 2018, 28, 1800339. [Google Scholar] [CrossRef]
- Maddaka, R.; Byung, P. Photovoltaic Photodetectors Based on In2O3/InN Core−Shell Nanorods. ACS Appl. Nano Mater. 2022, 5, 7418–7426. [Google Scholar]
- Wu, D.; Guo, J. Highly Polarization-Sensitive, Broadband, Self-Powered Photodetector Based on Graphene/PdSe2/Germanium Heterojunction. ACS Nano 2019, 13, 9907–9917. [Google Scholar] [CrossRef]
- Zeng, L.H.; Wu, D. Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications. Adv. Funct. Mater. 2019, 29, 1806878. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Zhang, Z. High-Crystalline 2D Layered PbI2with Ultrasmooth Surface: Liquid-Phase Synthesis and Application of High-Speed Photon Detection. Adv. Electron. Mater. 2016, 2, 1600291. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, S. 2D WS2 Based Asymmetric Schottky Photodetector with High Performance. Adv. Electron. Mater. 2021, 7, 2000964. [Google Scholar] [CrossRef]
- Shuzuo, L.; Dongmei, Y. Self-Powered, Flexible Ultraviolet Photodetector Based on ZnO/Te All Nanowires Heterojunction Structure. Phys. Status Solidi A. 2023, 220, 2200612. [Google Scholar]
- Lei, L.; Chao, Y. High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN. Nanoscale 2017, 9, 8142–8148. [Google Scholar]
- Ye, L.; Li, H. Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction. ACS Photonics 2016, 3, 692–699. [Google Scholar] [CrossRef]
- Gundimeda, A.; Krishna, S. Fabrication of non-polar GaN based highly responsive and fast UV photodetector. Appl. Phys. Lett. 2017, 110, 103507. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, Y. Single-Metal Atoms and Ultra-Small Clusters Manipulating Charge Carrier Migration in Polymeric Perylene Diimide for Efficient Photocatalytic Oxygen Production. Adv. Energy Mater. 2022, 12, 2200716. [Google Scholar] [CrossRef]
- Liu, J.W.; Zhu, J.H. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 2010, 132, 8945–8952. [Google Scholar] [CrossRef]
- Wang, Q.; Safdar, M. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 2014, 8, 7497–7505. [Google Scholar] [CrossRef]
- Wang, D.; Liu, X. Pt/AlGaN Nanoarchitecture: Toward High Responsivity, Self-Powered Ultraviolet-Sensitive Photodetection. Nano Lett. 2021, 21, 120–129. [Google Scholar] [CrossRef]
- Zhuo, R.; Zeng, L. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 2018, 12, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, R.; Wang, Y. High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p–n heterojunction. J. Mater. Chem. C 2018, 6, 299–303. [Google Scholar] [CrossRef]
- Teng, F.; Ouyang, W. Novel Structure for High Performance UV Photodetector Based on BiOCl/ZnO Hybrid Film. Small 2017, 13, 1700156. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wu, D. Synthesis of large-area 2D WS2 films and fabrication of a heterostructure for self-powered ultraviolet photodetection and imaging applications. J. Mater. Chem. C 2019, 7, 12121–12126. [Google Scholar] [CrossRef]
- Peng, Y.; Lu, J. Self-powered high-performance flexible GaN/ZnO heterostructure UV photodetectors with piezo-phototronic effect enhanced photoresponse. Nano Energy 2022, 94, 106945. [Google Scholar] [CrossRef]
- Bie, Y.Q.; Liao, Z.M. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater. 2011, 23, 649–653. [Google Scholar] [CrossRef]
- Guo, Y.; Song, W. A porous GaN/MoO3 heterojunction for filter-free, ultra-narrowband ultraviolet photodetection. J. Mater. Chem. C 2022, 10, 5116–5123. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, W. Low-cost writing method for self-powered paper-based UV photodetectors utilizing Te/TiO2 and Te/ZnO heterojunctions. Nanoscale Horiz. 2019, 4, 452–456. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Lin, T.; Wang, W.; Liu, C.; Ding, Y. High Performance GaN-Based Ultraviolet Photodetector via Te/Metal Electrodes. Materials 2023, 16, 4569. https://doi.org/10.3390/ma16134569
Lin S, Lin T, Wang W, Liu C, Ding Y. High Performance GaN-Based Ultraviolet Photodetector via Te/Metal Electrodes. Materials. 2023; 16(13):4569. https://doi.org/10.3390/ma16134569
Chicago/Turabian StyleLin, Sheng, Tingjun Lin, Wenliang Wang, Chao Liu, and Yao Ding. 2023. "High Performance GaN-Based Ultraviolet Photodetector via Te/Metal Electrodes" Materials 16, no. 13: 4569. https://doi.org/10.3390/ma16134569
APA StyleLin, S., Lin, T., Wang, W., Liu, C., & Ding, Y. (2023). High Performance GaN-Based Ultraviolet Photodetector via Te/Metal Electrodes. Materials, 16(13), 4569. https://doi.org/10.3390/ma16134569