Parameters Optimization of Laser-Grinding Chain for Processing Groove of 2.5-Dimensional C/SiC Composites
Abstract
:1. Introduction
2. Experimental Material and Processed Equipment
3. Experimental Scheme
3.1. Design of Laser Processing Experiments
Experiment Design for Grinding Parameters Optimization in Laser-Grinding Chain Process
4. Results and Discussion
4.1. Effect of Scanning Frequency and Scanning Spacing on the Macroscopic Morphology of the Groove Bottom Surface
4.2. Effect of Laser Processing on the Microscopic Morphology of the Groove Bottom
4.3. Influence of Laser Scanning Frequency and Scanning Spacing on Groove Characteristics
4.4. Surface Roughness Analysis of C/SiC Composite Groove by the Laser-Grinding Chain Processing
4.5. Analysis of C/SiC Composites Grooves Quality
5. Conclusions
- From the laser processing experiments, with the increase in scanning frequency, the width of the groove top hardly changed, the width of the groove bottom decreased first and then increased, the depth and the taper of the groove increased first and then decreased, the depression depth of the groove bottom decreased first and then increased, and the taper was the smallest when the scanning frequency was 50 kHz. Meanwhile, with the increased scanning spacing, the width of the groove top did not change significantly, the width of the groove bottom and depression depth of the groove decreased first and then increased, and the average depth of the groove increased first and then decreased, and the taper of the groove side wall decreased, and the taper of groove side wall reached the minimum value when the scanning spacing was 25 μm. Moreover, mostly, the taper of the groove’s left side wall was larger than the taper of the groove’s right side wall.
- From the orthogonal grinding experiments in laser-grinding chain processing C/SiC composite grooves, when the depth of cut was 30 μm, the liner speed of wheel was 62.832 m/min, and the feed speed was 10 mm/min, efficient and precise machining of C/SiC composite grooves could be achieved. Meanwhile, the surface roughness Sa sharply increased with increasing depth of cut, the surface roughness slowly increased with increasing feed rate, and the surface roughness decreased with increasing liner speed of wheel.
- Taking into account shape accuracy, size accuracy, surface quality, and the influence of these faction the subsequent grinding allowance, the laser power of 80 W, the scanning speed of 300 mm/s, the scanning frequency of 50 kHz, and the scanning spacing of 25 μm were selected to use ablation before grinding, and then, the depth of cut of 30 μm, the liner speed of the wheel of 62.832 m/min, and the feed speed of 10 mm/min were selected for grinding in the laser-grinding chain process
- Compared with the laser processing C/SiC composite groove, high surface quality, shape accuracy, and size accuracy of the C/SiC composite groove could be obtained by the laser-grinding chain process. While comparing with the grinding C/SiC composite groove, in theory, the high processing efficiency of the C/SiC composite groove could be obtained by the laser-grinding chain process, and the time used for the laser-grinding chain processing groove was about 23/40 of the grinding process.
- However, the size deviation between the actual depth and the ideal depth still existed, and the side wall was not perpendicular: this was because some errors were unavoidable, such as grinding wheel wear, low process precision, and tool setting errors. Therefore, the adjustment and compensation of errors in chain processing would be the key technology to further improve the groove quality.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rayat, M.S.; Gill, S.S.; Singh, R.; Sharma, L. Fabrication and machining of ceramic composites—A review on current scenario. Mater Manuf Process. 2017, 32, 1451–1474. [Google Scholar] [CrossRef]
- Diaz, O.G.; Axinte, D.A. Towards understanding the cutting and fracture mechanism in ceramic matrix composites. Int. J. Mach Tool Manu. 2017, 118, 12–25. [Google Scholar] [CrossRef]
- Li, Z.C.; Jiao, Y.; Deines, T.W.; Pei, Z.J.; Treadwell, C. Rotary ultrasonic machining of ceramic matrix composites: Feasibility study and designed experiments. Int. J. Mach Tool Manu. 2005, 45, 1402–1411. [Google Scholar] [CrossRef]
- Huang, L.M.; Xiang, Y.; Cao, F.; Liu, R.J.; Zhang, C.R. The degradation behavior of UHTCs based coatings coated PIP-C/SiC composites in thermal cycling environment. Compos. Part B Eng. 2016, 86, 126–134. [Google Scholar] [CrossRef]
- Bisht, N.; Verma, A.; Chauhan, S.; Singh, V.K. Effect of functionalized silicon carbide nano-particles as additive in cross-linked PVA based composites for vibration damping application. J. Vinyl. Addit. Technol. 2021, 27, 920–932. [Google Scholar] [CrossRef]
- Zhu, W.; Fu, H.; Xu, Z.F.; Liu, R.Z.; Jiang, P. Fabrication and characterization of carbon fiber reinforced SiC ceramic matrix composites based on 3D printing technology. J. Eur. Ceram. Soc. 2018, 38, 4604–4613. [Google Scholar] [CrossRef]
- Azarhoushang, B.; Tawakoli, T. Development of a novel ultrasonic unit for grinding of ceramic matrix composites. Int. J. Adv. Manuf. 2011, 57, 945–955. [Google Scholar] [CrossRef]
- Zhai, Z.Y.; Zhang, R.H.; Tang, A.F.; Zhang, Y.; Cui, Y.H. Fabrication of microstructure on C/SiC surface via femtosecond laser diffraction. Mater Lett. 2021, 293, 29711. [Google Scholar] [CrossRef]
- Qinglong, A.N.; Jie, C.H.E.N.; Weiwei, M.I.N.G.; Ming, C.H.E.N. Machining of SiC ceramic matrix composites: A review. Chin. J. Aeronaut. 2021, 34, 540–567. [Google Scholar] [CrossRef]
- Fan, S.; Yang, C.; He, L.; Du, Y.; Krenkel, W.; Greil, P.; Travitzky, N. Progress of ceramic matrix composites brake materials for aircraft application. Rev. Adv. Mater. Sci. 2016, 44, 313–325. [Google Scholar]
- Wang, X.; Gao, X.; Zhang, Z.; Cheng, L.; Ma, H.; Yang, W. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: A focused review. J. Eur. Ceram. Soc. 2021, 41, 4671–4688. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, F.; Gao, X.Y.; Liu, G.W. Impact resistance of 2D plain-woven C/SiC composites at high temperature. Mater. Des. 2016, 90, 635–641. [Google Scholar] [CrossRef]
- Garshin, A.P.; Kulik, V.I.; Matveev, S.A.; Nilov, A.S. Contemporary technology for preparing fiber-reinforced composite materials with a ceramic refractory matrix. Refract Ind. Ceram. 2017, 58, 148–161. [Google Scholar] [CrossRef]
- Arai, Y.; Inoue, R.; Goto, K.; Kogo, Y. Carbon fiber reinforced ultra-high temperature ceramic matrix composites: A review. Ceram. Int. 2019, 45, 14481–14489. [Google Scholar] [CrossRef]
- Sauder, C. Ceramic Matrix Composites: Nuclear Applications. In Ceramic Matrix Composites: Materials, Modeling and Technology; Wiley: Hoboken, NJ, USA, 2014; pp. 609–646. [Google Scholar]
- Liu, C.; Zhang, X.Z.; Gao, L.; Jiang, X.G.; Li, C.; Yang, T. Feasibility of micro-hole machining in fiber laser trepan drilling of 2.5 D Cf/SiC composite: Experimental investigation and optimization. Optik 2021, 242, 167–186. [Google Scholar] [CrossRef]
- Chen, B.; Wang, J.; Jiao, H.W.; Su, F. Research progress on grinding of carbon fiber ceramic matrix composites. Aerosp. Mater. Technol. 2022, 52, 12–23. [Google Scholar]
- Zhang, R.H.; Li, W.N.; Liu, Y.S.; Wang, C.H.; Wang, J.; Yang, X.J. Machining parameter optimization of C/SiC composites using high power picosecond laser. Appl. Surf. Sci. 2015, 330, 321–331. [Google Scholar] [CrossRef]
- Wang, H.J.; Lin, H.T.; Wang, C.Y.; Zheng, L.J.; Hu, X.Y. Laser drilling of structural ceramics—A review. J. Eur. Ceram. Soc. 2017, 37, 1157–1173. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Liu, Y.S.; Cao, L.Y.; Chen, J.; Qiu, G.T.; Wang, J. Preparation and analysis of micro-holes in C/SiC composites and ablation with a continuous wave laser. J. Eur. Ceram. Soc. 2021, 41, 176–184. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.Z.; Wang, G.F.; Wang, Z.F.; Gao, L. New ablation evolution behaviors in micro-hole drilling of 2.5 D Cf/SiC composites with millisecond laser. Ceram. Int. 2021, 47, 29670–29680. [Google Scholar] [CrossRef]
- Wang, C.H.; Zhang, L.T.; Liu, Y.S.; Cheng, G.H.; Zhang, Q. Ultra-short pulse laser deep drilling of C/SiC composites in air. Appl. Phys. A-Mater. 2013, 111, 1213–1219. [Google Scholar] [CrossRef]
- Zhai, Z.Y.; Wei, C.; Zhang, Y.C.; Cui, Y.H.; Zeng, Q.R. Investigations on the oxidation phenomenon of SiC/SiC fabricated by high repetition frequency femtosecond laser. Appl. Surf. Sci. 2020, 502, 131–144. [Google Scholar] [CrossRef]
- Liu, Z.; Fang, J.; Li, Y.C.; Zhang, X.B. Hole shape characteristics in femtosecond laser drilling of SiC/SiC composite thick plate. Laser Technol. 2022, 46, 736–741. (In Chinese) [Google Scholar]
- Jiao, H.W.; Chen, B.; Luo, L.; Li, J.B. Ablation hole characteristic of 2.5 dimensional Cf/SiC composites processed by nanosecond laser. China Mech. Eng. 2020, 31, 983–990. (In Chinese) [Google Scholar] [CrossRef]
- Tong, Y.G.; Bai, S.X.; Zhang, H.; Ye, Y.C. Laser ablation behavior and mechanism of C/SiC composite. Ceram. Int. 2013, 39, 6813–6820. [Google Scholar] [CrossRef]
- Rudolph, P.; Brzezinka, K.W.; Wäsche, R.; Kautek, W. Physical chemistry of the femtosecond and nanosecond laser–material interaction with SiC and a SiC–TiC–TiB2 composite ceramic compound. Appl. Surf. Sci. 2003, 208, 285–291. [Google Scholar] [CrossRef]
- Jiao, H.W.; Chen, B.; Deng, Z.H. Influence of laser parameters on processing microgrooves of 2.5-dimensional C/SiC composites via nanosecond laser. Int. J. Adv. Manuf. Technol. 2022, 118, 85–101. [Google Scholar] [CrossRef]
- Chen, J.; An, Q.L.; Ming, W.W.; Chen, M. Investigations on continuous-wave laser and pulsed laser induced controllable ablation of SiCf/SiC composites. J. Eur. Ceram. Soc. 2021, 41, 5835–5849. [Google Scholar] [CrossRef]
- Dong, X.; Shin, Y.C. Improved machinability of SiC/SiC ceramic matrix composite via laser-assisted micromachining. Int. J. Adv. Manuf. Technol. 2017, 90, 731–739. [Google Scholar] [CrossRef]
- Tawakoli, T.; Azarhoushang, B. Intermittent grinding of ceramic matrix composites (CMCs) utilizing a developed segmented wheel. Int. J. Mach. Tool Manu. 2011, 51, 112–119. [Google Scholar] [CrossRef]
- Diaz, O.G.; Axinte, D.A.; Novovic, D. Probabilistic modelling of tool unbalance during cutting of hard-heterogeneous materials: A case study in Ceramic Matrix Composites (CMCs). Compos. Part B Eng. 2018, 148, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.Q.; Deng, J.X.; Zhang, G.D.; Wu, Z.; Wu, F.F. Assessment in drilling of C/C-SiC composites using brazed diamond drills. J. Manuf. Process. 2017, 26, 31–43. [Google Scholar] [CrossRef]
- Chen, Y.R.; Su, H.H.; Fu, Y.C.; He, J.Y.; Zhang, W. Experimental study on ultrasonic vibration assisted dry drilling for SiCf/SiC ceramic matrix composites. Aeronaut. Manuf. Technol. 2018, 61, 47–51. (In Chinese) [Google Scholar] [CrossRef]
- Gu, F. Study on Key Techniques of Rotary Ultrasonic Machining of Ceramic Matrix Com Posite Based on Industrial Robot. Master’s Thesis, Zhejiang University, Hangzhou, China, 2020. [Google Scholar] [CrossRef]
- Weinert, K.; Jansen, T. Machining Aspects for the Drilling of C/C-SiC Materials. In Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications; Wiley: Hoboken, NJ, USA, 2008; pp. 287–301. [Google Scholar] [CrossRef]
- Wang, J.; Chen, B.; Xu, H.; Su, F. Laser-grinding compound processing of 2.5 dimensional C/SiC composite grooves. Acta Mater. Compos. Sin. 2022, 39, 6028–6041. (In Chinese) [Google Scholar] [CrossRef]
- Bertsche, E.; Ehmann, K.; Malukhin, K. Ultrasonic slot machining of a silicon carbide matrix composite. Int. J. Adv. Manuf. Technol. 2013, 66, 1119–1134. [Google Scholar] [CrossRef]
- Jiao, H.W. Research on Nanosecond Laser Processing Mechanism of 2.5 Dimensional C/SiC Composites. Master’s Thesis, Hunan University of Science and Technology, Xiangtan, China, 2021. [Google Scholar] [CrossRef]
- Cao, W.L. Research on blind hole processing of carbon fiber reinforced plastics by short pulse laser. Master’s Thesis, Donghua University, Shanghai, China, 2020. [Google Scholar]
- Fang, D.; Chen, Z.F.; Song, Y.D.; Sun, Z.G. Morphology and microstructure of 2.5 dimension C/SiC composites ablated by oxyacetylene torch. Ceram. Int. 2009, 335, 1249–1253. [Google Scholar] [CrossRef]
- Wang, W.J.; Song, H.W.; Liao, K.; Mei, X.S. Water-assisted femtosecond laser drilling of 4H-SiC to eliminate cracks and surface material shedding. Int. J. Adv. Manuf. Technol. 2021, 112, 553–562. [Google Scholar] [CrossRef]
- Wei, J.Y.; Yuan, S.M.; Zhang, J.Q.; Zhou, N.; Zhang, W.; Li, J.B. Femtosecond laser ablation behavior of SiC/SiC composites in air and water environment. Corrosion Sci. 2022, 208, 110671. [Google Scholar] [CrossRef]
- Chen, Z.F.; Fang, D.; Miao, Y.L.; Yan, B. Comparison of morphology and microstructure of ablation centre of C/SiC composites by oxy-acetylene torch at 2900 and 3550 °C. Corros. Sci. 2008, 50, 3378–3381. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.F.; Yu, S.J. Ablation behavior and mechanism analysis of C/SiC composites. J. Mater. Res. Technol. 2016, 5, 170–182. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. The Mechanism and Experimental Study of Axial Ultrasonic Vibration Assisted Grinding. Ph.D. Thesis, Tianjin University, Tianjin, China, 2016. [Google Scholar]
- Chen, B.; Li, S.; Deng, Z.; Guo, B.; Zhao, Q. Grinding marks on ultra-precision grinding spherical and aspheric surfaces. Int. J. Precis. Eng. Manuf. Green Technol. 2017, 4, 419–429. [Google Scholar] [CrossRef]
- Wang, D.P.; Lu, S.X.; Xu, D.; Zhang, Y.L. Research on material removal mechanism of C/SiC composites in ultrasound vibration-assisted grinding. Materials 2020, 13, 1918. [Google Scholar] [CrossRef] [Green Version]
Parameter | P (W) | v (mm/s) | N | f (kHz) | ls (um) |
---|---|---|---|---|---|
Value | 80 | 300 | 20 | 50, 100, 150, 200, 250, 300 | 20 |
Value | 80 | 300 | 20 | 200 | 5, 10, 15, 20, 25, 30 |
Depth of Cut ap (μm) | Liner Speed of Wheel vs (r/min) | Feed Rate vf (mm/min) | |
---|---|---|---|
1 | 30 | 37.7 | 10 |
2 | 30 | 50.3 | 30 |
3 | 30 | 62.8 | 20 |
4 | 50 | 37.7 | 30 |
5 | 50 | 50.3 | 20 |
6 | 50 | 62.8 | 10 |
7 | 70 | 37.7 | 20 |
8 | 70 | 50.3 | 10 |
9 | 70 | 62.8 | 30 |
Factor A (Depth of Cut) | Factor B (Liner Speed of Wheel) | Factor C (Feed Speed) | |
---|---|---|---|
K1 | 3.398 | 5.518 | 4.419 |
K2 | 4.189 | 4.404 | 4.472 |
K3 | 5.880 | 3.545 | 4.725 |
k1 | 1.133 | 1.839 | 1.473 |
k2 | 1.396 | 1.468 | 1.491 |
k3 | 1.960 | 1.182 | 1.575 |
R | 0.827 | 0.657 | 0.102 |
Priority of factors | A > B > C | ||
Optimal Scheme | A1B3C1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Wang, J.; Chen, B.; Guo, B.; Zhang, H.; Wang, Z. Parameters Optimization of Laser-Grinding Chain for Processing Groove of 2.5-Dimensional C/SiC Composites. Materials 2023, 16, 4761. https://doi.org/10.3390/ma16134761
Liu G, Wang J, Chen B, Guo B, Zhang H, Wang Z. Parameters Optimization of Laser-Grinding Chain for Processing Groove of 2.5-Dimensional C/SiC Composites. Materials. 2023; 16(13):4761. https://doi.org/10.3390/ma16134761
Chicago/Turabian StyleLiu, Guoyue, Jian Wang, Bing Chen, Bing Guo, Hua Zhang, and Zhaohui Wang. 2023. "Parameters Optimization of Laser-Grinding Chain for Processing Groove of 2.5-Dimensional C/SiC Composites" Materials 16, no. 13: 4761. https://doi.org/10.3390/ma16134761
APA StyleLiu, G., Wang, J., Chen, B., Guo, B., Zhang, H., & Wang, Z. (2023). Parameters Optimization of Laser-Grinding Chain for Processing Groove of 2.5-Dimensional C/SiC Composites. Materials, 16(13), 4761. https://doi.org/10.3390/ma16134761