Effect of Heat Treatment on Microstructure and Properties Evolution of Stainless Steel Cladding Plate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation of Heat Treatment
2.2. Experimental Methods
2.2.1. Microstructural Characterization
2.2.2. Electrochemical Properties
2.2.3. Mechanical Performance
3. Results and Discussion
3.1. Microstructure Characterization
3.2. Mechanical Properties and Fracture Characteristics
3.2.1. Microhardness of Bonding Joints
3.2.2. Shear Behavior and Fracture Characteristics
3.3. Electrochemical Testing
3.3.1. DL-EPR Test
3.3.2. Potentiodynamic Polarization
3.3.3. Electrochemical Impedance Spectroscopy
4. Conclusions
- (1)
- Diffusion of carbon atoms from the CS base to SS cladding might be promoted by hot rolling and heat treatment as long as it is in range of austenite intergranular sensitization. This affects the mechanical properties of bonding joints and corrosion resistance of SS cladding.
- (2)
- Stainless steel cladding of SSCP-H and SSCP-HQT exhibited different degrees of intergranular sensitization. However, almost no intergranular sensitization zone was observed in SSCP-HS and SSCPP-HST.
- (3)
- The bonding strength between CS and SS was closely associated with precipitation. Solution and tempering treatment with a proper temperature played a critical role in promoting carbide dissolution and retaining the carbon atoms’ reinforcement in the joints of SSCP, so the shear strength of SSCP-HST increased to 297 MPa.
- (4)
- SSCP-HS showed the lowest corrosion sensitization due to the dissolution of carbide in austenite. Specifically, tempering after solution treatment did not cause enough reprecipitation of chromium carbide. The DOS of SSCP-HST was 1.80 % and the value of Epit was 247 mV, which indicated that SSCP-HST still had good corrosion resistance.
- (5)
- SSCP-HST not only exhibited good mechanical properties of the CS base, but also had excellent corrosion resistance of the SS cladding. The comprehensive performance of SSCP was improved.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Z.; Liu, B.; Yu, W.; Zhang, B.; Ji, P.; Feng, J.; Yin, F. The Evolution Behavior and Constitution Characteristics of Interfacial Oxides in the Hot-Rolled Stainless Steel Clad Plate. Corros. Sci. 2023, 211, 110866. [Google Scholar] [CrossRef]
- Yu, W.X.; Liu, B.X.; Chen, C.X.; Liu, M.Y.; Zhang, X.; Fang, W.; Ji, P.G.; He, J.N.; Yin, F.X. Microstructure and Mechanical Properties of Stainless Steel Clad Plate Welding Joints by Different Welding Processes. Sci. Technol. Weld. Join. 2020, 25, 571–580. [Google Scholar] [CrossRef]
- Zhu, M.; Wu, W.; Qian, W.; Xia, L.; Zhang, Y.; Wang, B. A Brief Review on Welding of Stainless Steel Clad Plates: Issues and Future Perspectives. Int. J. Adv. Manuf. Technol. 2021, 115, 49–59. [Google Scholar] [CrossRef]
- Li, Q.; Chen, W.; Du, J.; Lu, M.; Wang, Z.; Huang, Y. Microstructure and Coordination Mechanism of Interface of Stainless Steel/Carbon Steel Cladding Plate Prepared by Vacuum Diffusion Bonding. Mater. Sci. Eng. A 2022, 829, 142178. [Google Scholar] [CrossRef]
- Tao, Y.; Yu-an, J.; Xiaolin, Y.; Wenbin, L.; Qihang, P.; Guo, J. Microstructures and Properties of Roll-Bonded Stainless /Medium Carbon Steel Clad Plates. J. Mater. Process. Technol. 2019, 266, 264–273. [Google Scholar] [CrossRef]
- Wu, B.; Guo, K.; Yang, X.; Gao, Y.; Jin, Y.; Gao, Y.; Wang, Q.; Zhang, F. Effect of Carbon Content of Substrate on the Microstructure Changes and Tensile Behavior of Clad Layer of Stainless Steel Composites. Mater. Sci. Eng. A 2022, 831, 142201. [Google Scholar] [CrossRef]
- Liu, B.X.; Wang, S.; Chen, C.X.; Fang, W.; Feng, J.H.; Zhang, X.; Yin, F.X. Interface Characteristics and Fracture Behavior of Hot Rolled Stainless Steel Clad Plates with Different Vacuum Degrees. Appl. Surf. Sci. 2019, 463, 121–131. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, D.; Hu, W.; Cui, L.; Gao, Z.; Zhou, L. Effect of Interlayers on Microstructure and Properties of 2205/Q235B Duplex Stainless Steel Clad Plate. Acta Metall. Sin. Engl. Lett. 2020, 33, 679–692. [Google Scholar] [CrossRef]
- Liu, B.X.; Yin, F.X.; Dai, X.L.; He, J.N.; Fang, W.; Chen, C.X.; Dong, Y.C. The Tensile Behaviors and Fracture Characteristics of Stainless Steel Clad Plates with Different Interfacial Status. Mater. Sci. Eng. A 2017, 679, 172–182. [Google Scholar] [CrossRef]
- Murkute, P.; Pasebani, S.; Burkan Isgor, O. Effects of Heat Treatment and Applied Stresses on the Corrosion Performance of Additively Manufactured Super Duplex Stainless Steel Clads. Materialia 2020, 14, 100878. [Google Scholar] [CrossRef]
- Yan, B.; Wang, S.; Liu, X.; Sun, D.; Hu, H. Effect of Heat Treatment on Intercrystalline Corrosion and Mechanical Properties of Stainless Steel Composite Plate. Jinshu Rechuli/Heat Treat. Met. 2018, 43, 121–124. [Google Scholar]
- Cheng, L.Y.; Zhu, X.G.; Liu, Z.W.; Li, P.; Sun, J. Effect of Heat Treatment on Microstructure and Mechanical Properties of 316L Stainless Steel Prepared by Selective Laser Melting. Cailiao Rechuli Xuebao/Trans. Mater. Heat Treat. 2020, 41, 80–86. [Google Scholar]
- Ren, M.; Xie, H.; Lin, F.; Jia, F.; Huo, M.; Wu, H.; Yang, M.; Jiang, Z. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Copper/SS304L Composite Sheets. Vacuum 2022, 204, 111370. [Google Scholar] [CrossRef]
- Liu, B.X.; Wang, S.; Fang, W.; Yin, F.X.; Chen, C.X. Meso and Microscale Clad Interface Characteristics of Hot-Rolled Stainless Steel Clad Plate. Mater. Charact. 2019, 148, 17–25. [Google Scholar] [CrossRef]
- Liu, B.X.; Wang, S.; Fang, W.; Ma, J.L.; Yin, F.X.; He, J.N.; Feng, J.H.; Chen, C.X. Microstructure and Mechanical Properties of Hot Rolled Stainless Steel Clad Plate by Heat Treatment. Mater. Chem. Phys. 2018, 216, 460–467. [Google Scholar] [CrossRef]
- Song, H.; Shin, H.; Shin, Y. Heat-Treatment of Clad Steel Plate for Application of Hull Structure. Ocean Eng. 2016, 122, 278–287. [Google Scholar] [CrossRef]
- Sun, L.; Chen, S.; Qiu, J.; Zhao, T. Research on the Mechanism and Detection Method of Intergranular Corrosion of AISI 304 Stainless Steel by Electrochemical Techniques in Heat Exchanger Equipment. J. Mater. Eng. Perform. 2022, 32, 534–543. [Google Scholar] [CrossRef]
- Qian, J.; Chen, C.; Yu, H.; Liu, F.; Yang, H.; Zhang, Z. The Influence and the Mechanism of the Precipitate/Austenite Interfacial C-Enrichment on the Intergranular Corrosion Sensitivity in 310 S Stainless Steel. Corros. Sci. 2016, 111, 352–361. [Google Scholar] [CrossRef]
- Huang, X.Z.; Wang, D.; Yang, Y. tao Effect of Precipitation on Intergranular Corrosion Resistance of 430 Ferritic Stainless Steel. J. Iron Steel Res. Int. 2015, 22, 1062–1068. [Google Scholar] [CrossRef]
- Devine, T.M.; Ritter, A.M. Sensitization of 12 Wt Pct Chromium, Titanium-Stabilized Ferritic Stainless Steel. Metall. Trans. A 1983, 14, 1721–1728. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, Q.; Zheng, Z.; Gao, Y. The Negative Effect of High-Intensity Shot-Peening on the Intergranular Corrosion Behavior of the Super304H Austenitic Stainless Steel. Corros. Sci. 2018, 143, 390–402. [Google Scholar] [CrossRef]
- Li, S.-X.; He, Y.-N.; Yu, S.-R.; Zhang, P.-Y. Evaluation of the Effect of Grain Size on Chromium Carbide Precipitation and Intergranular Corrosion of 316L Stainless Steel. Corros. Sci. 2013, 66, 211–216. [Google Scholar] [CrossRef]
- Mayo, W.E. Predicting IGSCC/IGA Susceptibility of Ni-Cr-Fe Alloys by Modeling of Grain Boundary Chromium Depletion. Mater. Sci. Eng. A 1997, 232, 129–139. [Google Scholar] [CrossRef]
- Ding, J.; Han, E.H.; Zhang, Z.; Wang, S.; Wang, J. Influence of Sigma Phase on Corrosion Behavior of 316L Stainless Steel in High Temperature and High Pressure Water. Mater. High Temp. 2017, 34, 78–86. [Google Scholar] [CrossRef]
- Qi, X.; Huan, P.; Wang, X.; Shen, X.; Liu, Z.; Di, H. Effect of Microstructure Homogeneity on the Impact Fracture Mechanism of X100 Pipeline Steel Laser–MAG Hybrid Welds with an Alternating Magnetic Field. Mater. Sci. Eng. A 2022, 851, 143656. [Google Scholar] [CrossRef]
- Yang, K.; Sha, T.; Gao, X.; Chen, H.; Chi, Q.; Ji, L. Study of Strain Capacity for High-Strain Marine Pipe. Materials 2022, 15, 5793. [Google Scholar] [CrossRef]
- Dhib, Z.; Guermazi, N.; Ktari, A.; Gasperini, M.; Haddar, N. Mechanical Bonding Properties and Interfacial Morphologies of Austenitic Stainless Steel Clad Plates. Mater. Sci. Eng. A 2017, 696, 374–386. [Google Scholar] [CrossRef]
- Dhib, Z.; Guermazi, N.; Gaspérini, M.; Haddar, N. Cladding of Low-Carbon Steel to Austenitic Stainless Steel by Hot-Roll Bonding: Microstructure and Mechanical Properties before and after Welding. Mater. Sci. Eng. A 2016, 656, 130–141. [Google Scholar] [CrossRef]
- Zhao, B.; Zhao, W.; Shi, H.; Li, G.; Ding, Y. The Effects of Stabilizing Treatment on Microstructure and Corrosion Resistance of 316Ti Stainless Steel. Eng. Fail. Anal. 2019, 105, 961–969. [Google Scholar] [CrossRef]
- Sun, L.; Sun, Y.; Lv, C.; Liu, Y.; Dai, N.; Jiang, Y.; Li, J.; Macdonald, D.D. Studies on the Degree of Sensitization of Hyper-Duplex Stainless Steel 2707 at 900 °C Using a Modified DL-EPR Test. Corros. Sci. 2021, 185, 109432. [Google Scholar] [CrossRef]
- Wang, J.; Shi, W.; Xiang, S.; Ballinger, R.G. Study of the Corrosion Behaviour of Sensitized 904L Austenitic Stainless Steel in Cl- Solution. Corros. Sci. 2021, 181, 109234. [Google Scholar] [CrossRef]
- Dehgahi, S.; Amini, R.; Alizadeh, M. Corrosion, Passivation and Wear Behaviors of Electrodeposited Ni–Al2O3–SiC Nano-Composite Coatings. Surf. Coatings Technol. 2016, 304, 502–511. [Google Scholar] [CrossRef]
- Zhang, G.A.; Cheng, Y.F. Micro-Electrochemical Characterization of Corrosion of Welded X70 Pipeline Steel in near-Neutral PH Solution. Corros. Sci. 2009, 51, 1714–1724. [Google Scholar] [CrossRef]
Material | Elements | |||||
---|---|---|---|---|---|---|
C | Si | Mn | Ni | Cr | Fe | |
304 stainless steel | 0.05 | 0.44 | 1.21 | 8.13 | 18.28 | Bal. |
45 carbon steel | 0.43 | 0.35 | 0.55 | 0.16 | 0.21 | Bal. |
Specimen | Processing Conditions |
---|---|
SSCP-H | Hot rolling |
SSCP-HQT | Hot rolling + Quenching (at 850 °C for 0.5 h, WC) + Tempering (at 500 °C for 1 h, AC) |
SSCP-HS | Hot rolling + Solution (at 1150 °C for 0.5 h, WC) |
SSCP-HST | Hot rolling + Solution (at 1150 °C for 0.5 h, WC) + Tempering (at 500 °C for 1 h, AC) |
Element | C (at%) | Cr (at%) | Fe (at%) |
---|---|---|---|
1# | 35.0 | 32.7 | 28.7 |
2# | 15.4 | 16.7 | 59.3 |
3# | 33.5 | 44.7 | 20.9 |
4# | 29.6 | 33.6 | 33.6 |
5# | 15.1 | 18.0 | 58.1 |
Specimen | Ia (A cm−2) | Ir (A cm−2) | DOS (Ir/Ia × 100%) |
---|---|---|---|
SSCP-H | 7.10 × 10−2 | 5.33 × 10−3 | 7.51 |
SSCP-HQT | 8.07 × 10−2 | 2.97 × 10−2 | 36.80 |
SSCP-HS | 2.75 × 10−2 | 4.08 × 10−4 | 1.48 |
SSCP-HST | 2.69 × 10−2 | 4.84 × 10−4 | 1.80 |
Specimen | Ecorr (V) | Epit (V) | |Epit − Ecorr| (V) |
---|---|---|---|
SSCP-H | −0.161 | 0.219 | 0.380 |
SSCP-HQT | −0.153 | 0.154 | 0.307 |
SSCP-HS | −0.126 | 0.376 | 0.502 |
SSCP-HST | −0.154 | 0.247 | 0.401 |
Specimen | Rs (Ω·cm2) | Rf (Ω·cm2) | CPE (S·sn·cm−2) | n |
---|---|---|---|---|
SSCP-H | 6.89 | 1.15 × 105 | 5.68 × 10−5 | 0.927 |
SSCP-HQT | 6.39 | 1.08 × 105 | 4.89 × 10−5 | 0.942 |
SSCP-HS | 6.04 | 1.47 × 105 | 5.51 × 10−5 | 0.938 |
SSCP-HST | 6.59 | 1.26 × 105 | 5.75 × 10−5 | 0.921 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhao, B.; Chen, Y.; Ding, Y. Effect of Heat Treatment on Microstructure and Properties Evolution of Stainless Steel Cladding Plate. Materials 2023, 16, 4809. https://doi.org/10.3390/ma16134809
Li L, Zhao B, Chen Y, Ding Y. Effect of Heat Treatment on Microstructure and Properties Evolution of Stainless Steel Cladding Plate. Materials. 2023; 16(13):4809. https://doi.org/10.3390/ma16134809
Chicago/Turabian StyleLi, Luyan, Boshen Zhao, Yongtong Chen, and Yi Ding. 2023. "Effect of Heat Treatment on Microstructure and Properties Evolution of Stainless Steel Cladding Plate" Materials 16, no. 13: 4809. https://doi.org/10.3390/ma16134809
APA StyleLi, L., Zhao, B., Chen, Y., & Ding, Y. (2023). Effect of Heat Treatment on Microstructure and Properties Evolution of Stainless Steel Cladding Plate. Materials, 16(13), 4809. https://doi.org/10.3390/ma16134809