Risk Factors with Porcelain Laminate Veneers Experienced during Cementation: A Review
Abstract
:1. Introduction
2. Methodology
3. Ceramic Material Used for PLVs
3.1. Feldspathic Veneers
3.2. Reinforced Glass-Based Ceramics
3.3. High-Translucent Zirconia
4. Type of Tooth Substrate
5. Type of Preparation
6. Type of Substrate vs. type of Restorative Materials
7. Tooth Surface Treatment Prior to Bonding
7.1. Removal of Temporary Cement
7.2. Effect of Tooth Surface Etching
7.3. Ceramic Surface Conditioning
7.4. Etching the Ceramic Intaglio Surface
7.5. Priming the Intaglio Ceramic Surface
7.6. Pre-cementation Shade Verification
7.7. Cementation and Curing Procedures
7.8. Shade of Substrate
7.9. Resin Cement Shade and Opacity
8. Optical Attributes of the Ceramic Restoration
8.1. Opacity and Translucency
8.2. Masking Properties of the Material
9. Polymerization of the Resin Cement
9.1. Polymerization Mode of Resin Cement
9.2. Post-Cementation Risk Factors
10. Challenges and Trends
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gresnigt, M.; Özcan, M.; Kalk, W. Esthetic rehabilitation of worn anterior teeth with thin porcelain laminate veneers. Eur. J. Esthet. Dent. 2011, 6, 298–313. [Google Scholar] [PubMed]
- Jurado, C.; Watanabe, H.; Villalobos Tinoco, J.; Ureta Valenzuela, H.; Perez, G.G.; Tsujimoti, A. A Conservative Approach to Ceramic Veneers: A Case Report. Oper. Dent. 2020, 45, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Pini, N.P.; Baggio Aguiar, F.H.; Nunez Leite Lima, D.A. Advances in dental veneers: Materials, applications, and techniques. Clin. Cosmet. Investig. Dent. 2012, 4, 9–16. [Google Scholar] [PubMed] [Green Version]
- Morita, R.K.; Hayashida, M.F.; Pupo, Y.M.; Berger, G.; Reggiani, R.D.; Betiol, E.A. Minimally invasive laminate veneers: Clinical aspects in treatment planning and cementation procedures. Case. Rep. Dent. 2016, 2016, 1839793. [Google Scholar] [CrossRef]
- Lee, Y.K. Translucency of dental ceramic, post and bracket. Materials 2015, 8, 7241–7249. [Google Scholar] [CrossRef] [Green Version]
- Daneshpooy, M.; Pournaghi Azar, F.; Alizade Oskoee, P.; Bahari, M.; Asdagh, S.; Khosravani, S.R. Color agreement between try-in paste and resin cement: Effect of thickness and regions of ultra-translucent multilayered zirconia veneers. J. Dent. Res. Dent. Clin. Dent. Prospects 2019, 13, 61–67. [Google Scholar] [CrossRef]
- Venancio, G.; Guimarães Júnior, R.R.; Dias, S.T. Conservative esthetic solution with ceramic laminates: Literature review. RSBO 2014, 11, 185–191. [Google Scholar] [CrossRef]
- Church, T.; Jessup, J.P.; Guillory, V.L.; Vandewalle, K.S. Translucency and strength of high-translucency monolithic zirconium oxide materials. Gen. Dent. 2017, 65, 48–52. [Google Scholar]
- Blatz, M.B.; Sadan, A.; Kern, M. Resin-ceramic bonding: A review of the literature. J. Prosthet. Dent. 2003, 89, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Peumans, M.; De Munck, J.; Fieuws, S.; Lambrechts, P.; Vanherle, G.; Van Meerbeek, B. A prospective ten-year clinical trial of porcelain veneers. J. Adhes. Dent. 2004, 6, 65–76. [Google Scholar]
- Pellizzer, E.P.; de Mello, C.C.; de Luna Gomes, J.M.; Santiago Júnior, J.F.; Araújo Lemos, C.A.; Verri, F.R. Vertical and Horizontal Misfit Analysis of 3-unit FDP Fabricated with Different Techniques and CAD/CAM Systems. Braz. Dent. J. 2018, 29, 342–346. [Google Scholar] [CrossRef]
- Sim, C.; Ibbetson, R.J. Comparison of fit of porcelain veneers fabricated using different techniques. Int. J. Prosthodont. 1993, 6, 36–42. [Google Scholar]
- Wall, J.G.; Reisbick, M.H.; Espelata, K.G. Cement luting thickness beneath porcelain veneers made on platinum foil. J. Prosthet. Dent. 1992, 68, 448–450. [Google Scholar] [CrossRef]
- Lim, C.C.; Ironside, J.G. Grit blasting and the marginal accuracy of two ceramic veneer systems—A pilot study. J. Prosthet. Dent. 1997, 77, 359–364. [Google Scholar] [CrossRef]
- Stappert, C.F.; Ozden, U.; Att, W.; Gerds, T.; Strub, J.R. Marginal accuracy of press-ceramic veneers influenced by preparation design and fatigue. Am. J. Dent. 2007, 20, 380–384. [Google Scholar]
- Yuce, M.; Ulusoy, M.; Turk, A.G. Comparison of marginal and internal adaptation of heat-pressed and cad/cam porcelain laminate veneers and a 2-year follow-up. J. Prosthodont. 2019, 28, 504–510. [Google Scholar] [CrossRef]
- Petridis, H.P.; Zekeridou, A.; Malliari, M.; Tortopidis, D.; Koidis, P. Survival of ceramic veneers made of different materials after a minimum follow-up period of five years: A systematic review and meta-analysis. Eur. J. Esthet. Dent. 2012, 7, 138–152. [Google Scholar]
- Layton, D.M.; Clarke, M. A systematic review and meta-analysis of the survival of non-feldspathic porcelain veneers over 5 and 10 years. Int. J. Prosthodont. 2013, 26, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, S.; Albanesi, R.B.; Sesma, N.; Agra, C.M.; Braga, M.M. Main clinical outcome of feldspathic porcelain and glass-ceramic laminate veneers: A systematic review and meta-analysis of survival and complication rates. Int. J. Prosthodont. 2016, 29, 38–49. [Google Scholar] [CrossRef]
- Fradeani, M.; Redemagni, M.; Corrado, M. Porcelain laminate veneers: 6- to 12-year clinical evaluation—A retrospective study. Int. J. Periodontics Res. Dent. 2005, 25, 9–17. [Google Scholar]
- D’Arcangelo, C.; De Angelis, F.; Vadini, M.; D’Amario, M. Clinical evaluation on porcelain laminate veneers bonded with light-cured composite: Results up to 7 year. Clin. Oral. Investig. 2012, 16, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Gürel, G.; Sesma, N.; Calamita, M.A.; Coachman, C.; Morimoto, S. Influence of enamel preservation on failure rates of porcelain laminate veneers. Int. J. Periodontics Res. Dent. 2013, 33, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Cötert, H.S.; Dündar, M.; Oztürk, B. The effect of various preparation designs on the survival of porcelain laminate veneers. J. Adhes. Dent. 2009, 11, 405–411. [Google Scholar] [PubMed]
- Wawrzynkiewicz, A.; Rozpedek-Kaminska, W.; Galita, G.; Lukomska-Szymanska, M.; Lapinska, B.; Sokolowski, J.; Majsterek, I. The cytotoxicity and genotoxicity of three dental universal adhesives—An in vitro study. Int. J. Mol. Sci. 2020, 21, 3950. [Google Scholar] [CrossRef]
- Abreu, J.L.B.; Hirata, R.; Witek, L.; Benalcazar Jalkh, E.B.; Nayak, V.V.; de Souza, B.M.; Silva, E.M.D. Manufacturing and characterization of a 3D printed lithium disilicate ceramic via robocasting: A pilot study. J. Mech. Behav. Biomed. Mater. 2023, 143, 105867. [Google Scholar] [CrossRef]
- Marchesi, G.; Camurri Piloni, A.; Nicolin, V.; Turco, G.; Di Lenarda, R. Chairside CAD/CAM Materials: Current Trends of Clinical Uses. Biology 2021, 10, 1170. [Google Scholar] [CrossRef]
- Gracis, S.; Thompson, V.P.; Ferencz, J.L.; Silva, N.R.F.A.; Bonfante, E.A. A New Classification System for All-Ceramic and Ceramic-like Restorative Materials. Int. J. Prosthodont. 2015, 28, 227–235. [Google Scholar] [CrossRef] [Green Version]
- AlJazairy, Y.H. Survival Rates for Porcelain Laminate Veneers: A Systematic Review. Eur. J. Dent. 2021, 15, 360–368. [Google Scholar] [CrossRef]
- Vichi, A.; Carrabba, M.; Paravina, R.; Ferrari, M. Translucency of ceramic materials for CEREC CAD/CAM system. J. Esthet. Restor. Dent. 2014, 26, 224–231. [Google Scholar] [CrossRef]
- Elsaka, S.E.; Einaghy, A.M. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent. Mater. 2016, 32, 908–914. [Google Scholar] [CrossRef]
- Ferrari, M.; Patroni, S.; Balleri, P. Measurement of enamel thickness in relation to reduction for etched laminate veneers. Int. J. Periodontics Restorative. Dent. 1992, 12, 407–413. [Google Scholar]
- Chun, Y.H.; Raffelt, C.; Pfeiffer, H.; Bizhang, M.; Saul, G.; Blunck, U.; Roulet, J.F. Restoring strength of incisors with veneers and full ceramic crowns. J. Adhes. Dent. 2010, 12, 45–54. [Google Scholar]
- Alavi, A.A.; Behroozi, Z.; Nik Eghbal, F. The shear bond strength of porcelain laminate to prepared and unprepared anterior teeth. J. Dent. 2017, 18, 50–55. [Google Scholar]
- Yu, H.; Zhao, Y.; Li, J.; Luo, T.; Gao, J.; Liu, H.; Liu, W.; Liu, F.; Zhao, K.; Liu, F.; et al. Minimal invasive microscopic tooth preparation in esthetic restoration: A specialist consensus. Int. J. Oral. Sci. 2019, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.M.; Liu, P.R.; Ramp, L.C.; Essig, M.E.; Givan, D.A.; Pan, Y.H. Fracture resistance and marginal discrepancy of porcelain laminate veneers influenced by preparation design and restorative material in vitro. J. Dent. 2012, 40, 202–209. [Google Scholar] [CrossRef]
- Magne, P.; Douglas, W.H. Rationalization of esthetic restorative dentistry based on biomimetics. J. Esthet. Dent. 1999, 11, 5–15. [Google Scholar] [CrossRef]
- Magne, P.; Belser, U. Bonded Porcelain Restorations in the Anterior Dentition: A Biomimetic Approach, 1st ed.; Carol Stream; Quintescence Publishing, Co.: Carol Stream, IL, USA, 2002. [Google Scholar]
- Bazos, P.; Magne, P. Bio–emulation: Biomimetically emulating nature utilizing a histo-anatomic approach; structural analysis. Eur. J. Esthet. Dent. 2011, 6, 8–19. [Google Scholar]
- Patroi, D.; Andrescu, C.F.; Ghergic, D.L. Esthetic rehabilitation of anterior teeth with enamel hypoplasia using porcelain laminate veneers. AMT 2018, 23, 72–74. [Google Scholar]
- Chai, S.Y.; Bennani, V.; Aarts, J.M.; Lyons, K. Incisal preparation design for ceramic veneers: A critical review. J. Am. Dent. Assoc. 2018, 149, 25–37. [Google Scholar] [CrossRef]
- Albanesi, R.B.; Pigozzo, M.N.; Sesma, N.; Laganá, D.C.; Morimoto, S. Incisal coverage or not in ceramic laminate veneers: A systematic review and meta-analysis. J. Dent. 2016, 52, 1–7. [Google Scholar] [CrossRef]
- Smales, R.J.; Etemadi, S. Long-term survival of porcelain laminate veneers using two preparation designs: A retrospective study. Int. J. Prosthodont. 2004, 17, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Hong, N.; Yang, H.; Li, J.; Wu, S.; Li, Y. Effect of preparation designs on the prognosis of porcelain laminate veneers: A systematic review and meta-Analysis. Oper. Dent. 2017, 42, E197–E213. [Google Scholar] [CrossRef] [PubMed]
- Alghazzawi, T.F.; Lemons, J.; Liu, P.R.; Essig, M.E.; Janowski, G.M. The failure load of CAD/CAM generated zirconia and glass-ceramic laminate veneers with different preparation designs. J. Prosthet. Dent. 2012, 108, 386–393. [Google Scholar] [CrossRef] [PubMed]
- LeSage, B.; Wells, D. Myths vs. realities: Two viewpoints on prepared veneers and prep-less veneers. J. Cosmetic. Dent. 2011, 27, 66–76. [Google Scholar]
- Altintas, S.H.; Tak, O.; Secilmis, A.; Usumez, A. Effect of provisional cements on shear bond strength of porcelain laminate veneers. Eur. J. Dent. 2011, 5, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Kumar, G.V.; Poduval, T.S.; Reddy, B.; Shesha Reddy, P. A study on provisional cements, cementation techniques, and their effects on bonding of porcelain laminate veneers. J. Indian. Prosthodont. Soc. 2014, 14, 42–49. [Google Scholar] [CrossRef]
- Grasso, C.A.; Caluori, D.M.; Goldstein, G.R.; Hittelman, E. In vivo evaluation of three cleaning techniques for prepared abutment teeth. J. Prosthet. Dent. 2002, 88, 437–441. [Google Scholar] [CrossRef]
- Guilardi, L.F.; Soares, P.; Werner, A.; de Jager, N.; Pereira, G.K.R.; Kleverlaan, C.J.; Rippe, M.P.; Valandro, L.F. Fatigue performance of distinct CAD/CAM dental ceramics. J. Mech. Behav. Biomed. Mater. 2020, 103, 103540. [Google Scholar]
- Sen, N.; Us, Y.O. Mechanical and optical properties of monolithic CAD-CAM restorative materials. J. Prosthet. Dent. 2018, 119, 593–599. [Google Scholar] [CrossRef]
- Vichi, A.; Sedda, M.; Fonzar, R.F.; Carrabba, M.; Ferrari, M. Comparison of contrast ratio, parameter, and flexural strength of traditional and “augmented translucency” zirconia for CEREC CAD/CAM system. J. Esthet. Restor. Dent. 2016, 28, S32–S39. [Google Scholar] [CrossRef]
- Sarac, D.; Sarac, Y.S.; Kulunk, S.; Kulunk, T. Effect of the dentin cleaning techniques on dentin wetting and on the bond strength of a resin luting agent. J. Prosthet. Dent. 2005, 94, 363–369. [Google Scholar] [CrossRef]
- Zortuk, M.; Gumus, H.O.; Kilinc, H.I.; Tuncdemir, A.R. Effect of different provisional cement remnant cleaning procedures including Er:YAG laser on shear bond strength of ceramics. J. Adv. Prosthodont. 2012, 4, 192–196. [Google Scholar] [CrossRef] [Green Version]
- The glossary of prosthodontic terms. J. Prosthet. Dent. 2017, 117, e1–e105. [CrossRef] [Green Version]
- Jayaprakash, T.; Srinivasan, M.R.; Indira, R. Evaluation of the effect of surface moisture on dentinal tensile bond strength to dentine adhesive: An in vitro study. J. Conserv. Dent. 2010, 13, 116–118. [Google Scholar] [CrossRef] [Green Version]
- Choi, A.N.; Lee, J.H.; Son, S.A.; Jung, K.H.; Kwon, Y.H.; Park, J.K. Effect of dentin wetness on the bond strength of universal adhesives. Materials 2017, 10, 1224. [Google Scholar] [CrossRef] [Green Version]
- Van Meerbeek, B.; Yoshihara, K.; Yoshida, Y.; Mine, A.; Van Landuyt, K.L. State of the art of self-etch adhesives. Dent. Mater. 2011, 27, 17–28. [Google Scholar] [CrossRef]
- Aykor, A.; Ozel, E. Five-year clinical evaluation of 300 teeth restored with porcelain laminate veneers using total-etch and a modified self-etch adhesive system. Oper. Dent. 2009, 34, 516–523. [Google Scholar] [CrossRef]
- Newsome, P.; Owen, S. Ceramic veneers in general dental practice. Part four: Clinical procedures 2. Aesthetic Dent. Today 2008, 2, 9–14. [Google Scholar]
- Bertschinger, C.; Paul, S.J.; Lüthy, H.; Schärer, P. Dual application of dentin bonding agents: Effect on bond strength. Am. J. Dent. 1996, 9, 115–119. [Google Scholar]
- Nahon, M.; Dentkos, T.R.; Nelson, S.K.; Gardner, F.M.; Rillman, E.A. Effect of impression materials on hybridized dentin. J. Prosthet. Dent. 2001, 85, 568–574. [Google Scholar] [CrossRef]
- Magne, P. Immediate dentin sealing: A fundamental procedure for indirect bonded restorations. J. Esthet. Restor. Dent. 2005, 17, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Dalby, R.; Ellakwa, A.; Millar, B.; Martin, F.E. Influence of immediate dentin sealing on the shear bond strength of pressed ceramic luted to dentin with self-etch resin cement. Int. J. Dent. 2012, 2012, 310702. [Google Scholar] [CrossRef] [PubMed]
- Usumez, A.; Aykent, F. Bond strengths of porcelain laminate veneers to tooth surfaces prepared with acid and Er,Cr:YSGG laser etching. J. Prosthet. Dent. 2003, 90, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Giray, F.E.; Duzdar, L.; Oksuz, M.; Tanboga, I. Evaluation of the bond strength of resin cements of resin cements used to lute ceramics on laser–etched dentin. Photomed. Laser. Surg. 2014, 32, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Şişmanoğlu, S.; Gürcan, A.T.; Yıldırım-Bilmez, Z.; Turunç-Oğuzman, R.; Gümüştaş, B. Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials. J. Adv. Prosthodont. 2020, 12, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Lung, C.Y.K.; Matinlinna, J.P. Aspects of silane coupling agents and surface conditioning in dentistry: An overview. Dent. Mater. 2012, 28, 467–477. [Google Scholar] [CrossRef]
- Newsome, P.; Owen, S. Ceramic veneers in general dental practice. Part 2: Choice of materials. Int. Dent. S.A. 2007, 10, 72–81. [Google Scholar]
- Addison, O.; Marquis, P.M.; Fleming, G.J.P. The impact of hydrofluoric acid surface treatments on the performance of a porcelain laminate restorative material. Dent. Mater. 2007, 23, 461–468. [Google Scholar] [CrossRef]
- Alex, G. Preparing porcelain surfaces for optimal bonding. Compend. Contin. Educ. Dent. 2008, 29, 324–335. [Google Scholar]
- Stagel, I.; Nathanson, D.; Hsu, C.S. Shear strength of the composite bond to etched porcelain. J. Dent. Res. 1987, 66, 1460–1465. [Google Scholar] [CrossRef]
- Özcan, M.; Matinlinna, J.P.; Vallittu, P.K.; Huysmans, M.C. Effect of drying time of 3-methacryloxypropyltrimethoxysilane on the shear bond strength of a composite resin to silica-coated base/noble alloys. Dent. Mater. 2004, 20, 586–590. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, J.R.; Benetti, P.; Özcan, M.; de Oliveira, L.F.; Della Bona, A.; Takahashi, F.E.; Bottino, M.A. Surface characterization of feldspathic ceramic using ATR FT-IR and ellipsometry after various silanization protocols. Dent. Mater. 2012, 28, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef]
- Özcan, M.; Barbosa, S.; Melo, R.; Galhano, G.; Bottino, M. Effect of surface conditioning methods on the microtensile bond strength of resin composite to composite after aging conditions. Dent. Mater. 2007, 23, 1276–1282. [Google Scholar] [CrossRef]
- Gresnigt, M.; Özcan, M.; Muis, M.; Kalk, W. Bonding of glass ceramic and indirect composite to non-aged and aged resin composite. J. Adhes. Dent. 2012, 14, 59–68. [Google Scholar]
- Özcan, M.; Alander, P.; Vallittu, P.K.; Huysmans, M.C.; Kalk, W. Effect of three surface conditioning methods to improve bond strength of particular filler resin composites. J. Mater. Sci. Mater. Med. 2005, 16, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Özcan, M.; Koolman, C.; Aladag, A.; Dündar, M. Effects of different surface conditioning methods on the bond strength of composite resin to amalgam. Oper. Dent. 2011, 36, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Magne, P.; Cascione, D. Influence of post-etching cleaning and connecting porcelain on the microtensile bond strength of composite resin to feldspathic porcelain. J. Prosthet. Dent. 2006, 96, 354–361. [Google Scholar] [CrossRef]
- Hamlett, K. The art of veneer cementation. Alpha Omegan 2009, 102, 128–132. [Google Scholar] [CrossRef]
- Martins, M.E.; Leite, F.P.; Queiroz, J.R.; Vanderlei, A.D.; Reskalla, H.N.; Özcan, M. Does the ultrasonic cleaning medium affect the adhesion of resin cement to feldspathic ceramic? J. Adhes. Dent. 2012, 14, 507–509. [Google Scholar]
- Angkasith, P.; Burgess, J.O.; Bottino, M.C.; Lawson, N.C. Cleaning methods for zirconia following salivary contamination. J. Prosthodont. 2016, 25, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Lin, C.L.; Sun, M.T.; Chang, Y.H. Numerical investigation of macro- and micro-mechanics of a ceramic veneer bonded with various cement thicknesses using the typical and submodeling finite element approaches. J. Dent. 2009, 37, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Sabarinathan, S.; Sreelal, T.; Rajambigai, A.; Anusuya, S. Evaluation of influence of die spacer thickness on the shear bond strength of porcelain laminate veneers: An in-vitro study. Indian. J. Stomatol. 2016, 7, 42–47. [Google Scholar]
- Niu, E.; Agustin, M.; Douglas, R.D. Color match of machinable lithium disilicate ceramics: Effects of cement color and thickness. J. Prosthet. Dent. 2014, 111, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Chu, F.C.S. Clinical considerations in managing severe tooth discoloration with porcelain veneers. J. Am. Dent. Assoc. 2009, 140, 442–446. [Google Scholar] [CrossRef]
- Azer, S.S.; Rosenstiel, S.F.; Seghi, R.R.; Johnston, W.M. Effect of substrate shades on the color of ceramic laminate veneers. J. Prosthet. Dent. 2011, 106, 179–183. [Google Scholar] [CrossRef]
- Sari, T.; Ural, C.; Yüzbas, E.; Duran, I.; Cengiz, S.; Kavut, I. Color match of a feldspathic ceramic CAD-CAM material for ultrathin laminate veneers as a function of substrate shade, restoration color, and thickness. J. Prosthet. Dent. 2018, 119, 455–460. [Google Scholar] [CrossRef]
- Pires, L.A.; Novais, P.N.R.; Araújo, V.D.; Pegoraro, L.F. Effects of the type and thickness of ceramic, substrate, and cement on the optical color of a lithium disilicate ceramic. J. Prosthet. Dent. 2017, 117, 144–149. [Google Scholar] [CrossRef]
- Turgut, S.; Bagis, B. Effect of resin cement and ceramic thickness on final color of laminate veneers: An in vitro study. J. Prosthet. Dent. 2013, 109, 179–186. [Google Scholar] [CrossRef]
- Chen, X.D.; Hong, G.; Xing, W.Z.; Wang, Y.N. The influence of resin cements on the final color of ceramic veneers. J. Prosthodont. Res. 2015, 59, 172–177. [Google Scholar] [CrossRef]
- Dede, D.O.; Ceylan, G.; Yilmaz, B. Effect of brand and shade of resin cements on the final color of lithium disilicate ceramic. J. Prosthet. Dent. 2016, 117, 539–544. [Google Scholar] [CrossRef]
- Dede, D.O.; Sahin, O.; Özdemir, O.S.; Yilmaz, B.; Celik, E.; Köroglu, A. Influence of the color of composite resin foundation and luting cement on the final color of lithium disilicate ceramic systems. J. Prosthet. Dent. 2017, 117, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Kürklü, D.; Azer, S.S.; Yilmaz, B.; Johnston, W.M. Porcelain thickness and cement shade effects on the colour and translucency of porcelain veneering materials. J. Dent. 2013, 41, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Skyllouriotis, A.L.; Yamamoto, H.L.; Nathanson, D. Masking properties of ceramics for veneer restorations. J. Prosthet. Dent. 2017, 118, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Archegas, L.R.P.; Freire, A.; Vieira, S.; Caldas, D.B.M.; Souza, E.M. Colour stability and opacity of resin cements and flowable composites for ceramic veneer luting after accelerated ageing. J. Dent. 2011, 39, 804–810. [Google Scholar] [CrossRef]
- Almeida, J.R.; Schmitt, G.U.; Kaizer, M.R.; Boscato, N.; Moraes, R.R. Resin–based luting agents and color stability of bonded ceramic veneers. J. Prosthet. Dent. 2015, 114, 272–277. [Google Scholar] [CrossRef]
- Silami, F.D.J.; Tonani, R.; Alandia-Román, C.C.; Pires-de-Souza, F.d.C.P. Influence of different types of resin luting agents on color stability of ceramic laminate veneers subjected to accelerated artificial aging. Braz. Dent. J. 2016, 27, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.J.; Chae, K.H.; Rawls, H.R. Development of a new photoinitiation system for dental light-cure composite resins. Dent. Mater. 1999, 15, 120–127. [Google Scholar] [CrossRef]
- Omar, H.; Atta, O.; El-Mowafy, O.; Khan, S.A. Effect of CAD-CAM porcelain veneers thickness on their cemented color. J. Dent. 2010, 38, 95–99. [Google Scholar] [CrossRef]
- Porto, I.C.C.M.; Soares, L.E.S.; Martin, A.A.; Cavalli, V.; Liporoni, P.C.S. Influence of the photoinitiator system and light photoactivation units on the degree of conversion of dental composites. Braz. Oral. Res. 2010, 24, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Rajkumar, B.; Gupta, V.; Bhatt, A. Current photo-initiators in dental materials. Int. J. App. Dent. Sci. 2017, 3, 17–20. [Google Scholar]
- Price, R.B.T. Light Curing in Dentistry. Dent. Clin. North Am. 2017, 61, 751–778. [Google Scholar] [CrossRef]
- Novais, V.R.; Raposo, L.H.A.; Miranda, R.R.; Lopes, C.C.; Simamoto, P.C.J.; Soares, C.J. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes. J. Appl. Oral. Sci. 2017, 25, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Perdigão, J. New Developments in dental adhesion. Dent. Clin. North Am. 2007, 51, 333–357. [Google Scholar] [CrossRef]
- De Souza, G.; Braga, R.R.; Cesar, P.F.; Lopez, G.C. Correlation between clinical performance and degree of conversion of resin cements: A literature review. J. Appl. Oral. Sci. 2015, 23, 358–368. [Google Scholar] [CrossRef] [Green Version]
- Usumez, A.; Ozturk, A.N.; Usumez, S.; Ozturk, B. The efficiency of different light sources to polymerize resin cement beneath porcelain laminate veneers. J. Oral. Rehab. 2004, 31, 160–165. [Google Scholar] [CrossRef]
- Rotoli, B.T.; Lima, D.A.N.L.; Pini, N.P.; Aguiar, F.H.; Pereira, G.D.; Paulillo, L.A. Porcelain veneers as an alternative for esthetic treatment: Clinical report. Oper. Dent. 2013, 38, 459–466. [Google Scholar] [CrossRef]
- Sehgal, A.; Rao, Y.M.; Joshua, M.; Narayanan, L.L. Evaluation of the effects of the oxygen-inhibited layer on shear bond strength of two resin composites. J. Conserv. Dent. 2008, 11, 159–161. [Google Scholar] [CrossRef] [Green Version]
- Granell-Ruíz, M.; Agustín-Panadero, R.; Fons-Font, A.; Román-Rodríguez, J.-L.; Solá-Ruíz, M.-F. Influence of bruxism on survival of porcelain laminate veneers. Med. Oral Patol. Oral Cir. Bucal 2014, 1, e426–e432. [Google Scholar] [CrossRef]
- Gürel, G. The Science and Art of Porcelain Laminate Veneres; Quintescence Publishing, Co.: Carol Stream, IL, USA, 2003. [Google Scholar]
- Vanlioğlu, B.A.; Kulak-Özkan, Y. Minimally invasive veneers: Current state of the art. Clin. Cosmet. Investig. Dent. 2014, 6, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Romão, R.M.; Lopes, G.D.R.S.; De Matos, J.D.M.; Lopes, G.D.R.S.; de Vasconcelos, J.E.L.; Fontes, N.M. Causes of failures in ceramic veneers restorations: A literature review. Int. J. Adv. Res. 2018, 6, 896–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matinlinna, J.P.; Vallittu, P.K. Bonding of resin composites to etchable ceramic surfaces—An insight review of the chemical aspects on surface conditioning. J. Oral. Rehabil. 2007, 34, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Magne, P.; Magne, M. Treatment of extended anterior crown fractures using Type IIIA bonded porcelain restorations. J. Calif. Dent. Assoc. 2005, 33, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Barghi, N. To silanate or not to silanate: Making a clinical decision. Compend. Contin. Educ. Dent. 2000, 21, 659–662, 664. [Google Scholar]
- Pegoraro, T.A.; Da Silva, N.R.; Carvalho, R.M. Cements for use in esthetic dentistry. Dent. Clin. North Am. 2007, 51, 187–192. [Google Scholar] [CrossRef]
- Sunico-Segarra, M.; Segarra, A. Resin Cements: Factors Affecting Clinical Performance. In A Practical Clinical Guide to Resin Cements; Sunico-Segarra, M., Segarra, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 9–22. [Google Scholar]
- Rasetto, F.H.; Driscoll, C.F.; Von Fraunhofer, J.A. Effect of light source and time on the polymerization of resin cement through ceramic veneers. J. Prosthodont. 2001, 10, 133–139. [Google Scholar] [CrossRef]
- Robles, M.; Jurado, C.A.; Azpiazu-Flores, F.X.; Villalobos-Tinoco, J.; Afrashtehfar, K.I.; Fischer, N.G. An Innovative 3D Printed Tooth Reduction Guide for Precise Dental Ceramic Veneers. J. Funct. Biomater. 2023, 14, 216. [Google Scholar] [CrossRef]
- Kihara, H.; Sugawara, S.; Yokota, J.; Takafuji, K.; Fukazawa, S.; Tamada, A.; Hatakeyama, W.; Kondo, H. Applications of three-dimensional printers in prosthetic dentistry. J. Oral. Sci. 2021, 63, 212–216. [Google Scholar] [CrossRef]
- Silva, B.P.; Mahn Arteaga, G.; Mahn, E. Predictable 3D guided adhesive bonding of porcelain veneers using 3D printed trays. J. Esthet. Restor. Dent. 2021, 33, 692–701. [Google Scholar] [CrossRef]
Material | Brand (Manufacturer) | Composition | Translucency Parameter | Average Crystal Size | Fracture Toughness (MPa.m0.5) | Elastic Modulus (E) in GPa |
---|---|---|---|---|---|---|
Feldspathic ceramic | Vitablocs Mark II (Vita Zahnfabrik, Bad Sackingen, Germany) | 56–64% SiO2, 20–23% Al2O3, 6–9% Na2O, 6–8% K2O | 29.0 ± 0.7 | ±15 µm | 0.84 ± 0.06 | ±45 |
Lithium disilicate ceramic (LT) | IPS e.max Press or CAD (Ivoclar Vivadent, Schaan, Liechtenstein) | 58–80% SiO2, 11–19% Li2O, 0–13% K2O, 0–8% ZrO2, 0–5% Al2O3 | 26.0 ± 0.6 | ±1.5 um | 1.23 ± 0.26 | ±95 |
Zirconia-reinforced glass–ceramic (HT) | Vita Suprinity (Vita Zahnfabrik, Bad Sackingen, Germany) | 56–64% SiO2, 1–4% Al2O3, 15–21% Li2O, 8–12% ZrO2, 1–4% K2O | 31.0 ±1.0 | ±0.5 µm | 1.25 ± 0.79 | ±70 |
Yttria-stabilized tetragonal zirconia polycrystal (HT) | VITA YZ (Vita Zahnfabrik, Bad Sackingen, Germany) | 90.9_94.5% ZrO2, 4 6% Y2O3, 1.5–2.5% HfO2, 0–0.3% Al3O3, 0–0.3% Fe2O3 | 14.44 ± 0.34 | ±350–500 nm | ±4.5 | ±210 |
Ceramic Type | Conditioning | Rinsing Time | Silanization Time |
---|---|---|---|
Feldspathic [3] | 9.5% HF for 1 to 2.5 min | 1 min | 1 to 5 min depending on silane system, in one or 2 bottles |
Leucite-reinforced [3] | 9.5% HF for 60 s | ||
Lithium disilicate-reinforced [3] | 9.5% HF for 20 s |
Presentation and Recommendations of Use | One Bottle Silane [70] | Two Bottles Silane [75] |
---|---|---|
Bottle content | 1% to 5% silane in a water/ethanol solution with an acetic acid adjusted pH of 4 to 5. | Container1: unhydrolyzed silane/ethanol solution. Container 2: an acetic acid/water solution. |
Shelf life | Limited to one year | Around two years |
Recommendation of use |
| Must be discarded after shelf-life is reached. |
Number of coats | Maximum 2 coats | |
Time for hydrolysis to occur | Already pre-hydrolyzed | From 0 to 5 min |
Effect of treatment | Silane in the solution reacts with the substrate, forming chemical bonds | The unhydrolyzed silane/ethanol solution in container 1 serves as the primary active component. The acetic acid/water solution in container 2 helps facilitate the hydrolysis of the silane. When the contents of both containers are mixed, hydrolysis occurs |
Layers | Composition | Method of Elimination | First Alternative Method of Elimination | Second Alternative Method of Elimination |
---|---|---|---|---|
Outermost layer [67] | Small oligomers | Washed away by organic solvents or water at room temperature | Apply the silane followed by hot air drying (50 ± 5 °C) for 15 s for proper solvent evaporation. Then rinse with hot water (80 °C) for 15 s followed by another hot air drying for 15 s. | Try-in step performed following the silanation |
Middle layer [76,77,78] | Hydrolyzable oligomers could compromise the coupling of the cement | Removed with hot water | ||
Inner layer [76,77,78] | Monolayer covalently bonded to the silica phase of the ceramic and is hydrolytically stable | Not to be removed | N.A | N.A |
Resin Cement | Indications | Contra-Indications | Risk |
---|---|---|---|
Light-cured [104] | Thin and translucent veneers | Thick and more opaque veneers | Incomplete photo-polymerization at the thick parts of the veneer |
Dual-cured [103] | Thick and more opaque veneers | Thin HT veneers | Discoloration, a prejudice in thin veneers cases |
Base paste of the dual-cured system [103] | Optional with some dual-cured resin cement | Thick and more opaque veneers | Sub-optimal cure of the resin cement |
Factors | Clinical and Material Parameters | Clinical Protocols | Risks |
---|---|---|---|
Thickness of restoration | Thickness should be ≤0.8 mm for purely LC cement and ≤2.0 mm for DC cement | Cement hardness and efficiency of polymerization decreases with thickness | |
Translucency/Opacity of restoration | Greater degree of polymerization with more translucent ceramics, such as feldspathic porcelains and LDS HT. | Longer photoactivation time with opaque porcelains (twice as long) | |
Shade has less effect on polymerization than translucency | Longer photoactivation time with darker restoration shade (up to double) | ||
Factors related to resin cement [113] | Mode of polymerization (LC or DC) | DC cement should be light-cured to gain initial immediate set. Protect cement on the margin. | Lower degree of conversion with delayed photo-activation and/or leaving cement margin exposed to ambient oxygen. |
Opacity of cement | Increase photoactivation time for opaque cement. | Shorter photoactivation time affects quality of cement. | |
Film thickness | Longer photoactivation time is required with film thickness of >40 μm | Type II cement or less than optimal internal fit require longer photactivation time | |
Filler content and particle size | High filler content and particle size improve depth of cure. | When flowable composites are used for cementation, less depth of cure is expected due to very small filler particle size. | |
Factors related to photo-polymerization units (PPU) [113] | Distance | Light tip as close as possible to the veneer surface. | Photo-polymerization time should be increased with distance. |
Intensity of light | No less than 800 mw/cm2 |
| |
Photo-polymerization protocols | Conventional protocol or soft start polymerization (ramped or stepped) | Conventional protocol with high intensity PPUs generates “stress accumulation” due to polymerization shrinkage at resin/dentin interface. | |
Rate of photo-polymerization | Slow rate (40–60 s) with halogen light (low intensity 800 mW/cm2) versus rapid rate (3–6 s) with PAC lights. | Rapid rate may cause excessive polymerization shrinkage. | |
Duration of exposure | 15–20 s with high intensity PPUs (>1000 mW/cm2). Longer (×2 manufacturer’s instructions) for opaque ceramics and cement, darker shade of restoration, and increased distance. | Suboptimal polymerization if duration is not respected (with PAC, duration must be more than recommended by manufacturer) | |
Radiation Wavelength | Light WL should be within range of activation of the photoinitiator (from 420 to 500 nm with CQ) | Otherwise no initiation of polymerization. Only temperature elevation occurs. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assaf, A.; Azer, S.S.; Sfeir, A.; Al-Haj Husain, N.; Özcan, M. Risk Factors with Porcelain Laminate Veneers Experienced during Cementation: A Review. Materials 2023, 16, 4932. https://doi.org/10.3390/ma16144932
Assaf A, Azer SS, Sfeir A, Al-Haj Husain N, Özcan M. Risk Factors with Porcelain Laminate Veneers Experienced during Cementation: A Review. Materials. 2023; 16(14):4932. https://doi.org/10.3390/ma16144932
Chicago/Turabian StyleAssaf, André, Shereen S. Azer, Abdo Sfeir, Nadin Al-Haj Husain, and Mutlu Özcan. 2023. "Risk Factors with Porcelain Laminate Veneers Experienced during Cementation: A Review" Materials 16, no. 14: 4932. https://doi.org/10.3390/ma16144932
APA StyleAssaf, A., Azer, S. S., Sfeir, A., Al-Haj Husain, N., & Özcan, M. (2023). Risk Factors with Porcelain Laminate Veneers Experienced during Cementation: A Review. Materials, 16(14), 4932. https://doi.org/10.3390/ma16144932