A Study on a Polymeric Foam Based on Pulse Proteins and Cellulose Fibrils
Abstract
:1. Introduction
2. Experimental Methods and Materials
2.1. Preparation of Blended Lentil Protein/CF Foams
2.2. Wet Foam Properties
2.3. Shear Rheology Measurement
2.4. Solid Foam Preparation
2.5. Solid Foam Characterization
2.6. Statistical Analysis
3. Results and Discussion
3.1. Foaming Properties
3.2. Shear Rheology Measurement
3.3. Solid Foam Characterization
3.4. Solid Foams Morphology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nickerson, M.T.; House, J.D.; Li-Chan, E.C.Y. Canadian Proteins Unlocking the Potential of Canadian Proteins. Available online: http://canadianfoodbusiness.com/2013/07/08/canadian-proteins/ (accessed on 1 January 2014).
- Aiking, H. Future Protein Supply. Trends Food Sci. Technol. 2011, 22, 112–120. [Google Scholar] [CrossRef]
- Kuhn, M.E. Food Technology. 2014, Volume 68, pp. 19–30. Available online: https://www.ift.org/news-and-publications/food-technology-magazine/issues/2014/december/features/a-new-crop-of-plant-protein-pioneers (accessed on 3 March 2023).
- Aydemir, L.Y.; Yemenicioğlu, A. Potential of Turkish Kabuli Type Chickpea and Green and Red Lentil Cultivars as Source of Soy and Animal Origin Functional Protein Alternatives. LWT-Food Sci. Technol. 2013, 50, 686–694. [Google Scholar] [CrossRef] [Green Version]
- Jarpa-Parra, M.; Tian, Z.; Temelli, F.; Zeng, H.; Chen, L. Understanding the Stability Mechanisms of Lentil Legumin-like Protein and Polysaccharide Foams. Food Hydrocoll. 2016, 61, 903–913. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.I.; Simpson, B.K.; Prasher, S.O.; Monpetit, D.; Malcolmson, L. Thermal Processing Effects on the Functional Properties and Microstructure of Lentil, Chickpea, and Pea Flours. Food Res. Int. 2011, 44, 2534–2544. [Google Scholar] [CrossRef]
- Boye, J.; Zare, F.; Pletch, A. Pulse Proteins: Processing, Characterization, Functional Properties and Applications in Food and Feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Kiosseoglou, V.; Paraskevopoulou, A. Functional and Physicochemical Properties of Pulse Proteins. In Pulse Foods: Processing, Quality and Nutraceutical Applications; Tiwari, B.K., Gowen, A., McKenna, B., Eds.; Academic Press: Cambridge, MA, USA, 2011; pp. 57–90. ISBN 978-0-12-382018-1. [Google Scholar]
- Jaxel, J.; Markevicius, G.; Rigacci, A.; Budtova, T. Thermal Superinsulating Silica Aerogels Reinforced with Short Man-Made Cellulose Fibers. Compos. Part Appl. Sci. Manuf. 2017, 103, 113–121. [Google Scholar] [CrossRef]
- Wu, Q.; Lindh, V.H.; Johansson, E.; Olsson, R.T.; Hedenqvist, M.S. Freeze-Dried Wheat Gluten Biofoams; Scaling up with Water Welding. Ind. Crop. Prod. 2017, 97, 184–190. [Google Scholar] [CrossRef]
- Ago, M.; Ferrer, A.; Rojas, O.J. Starch-Based Biofoams Reinforced with Lignocellulose Nanofibrils from Residual Palm Empty Fruit Bunches: Water Sorption and Mechanical Strength. ACS Sustain. Chem. Eng. 2016, 4, 5546–5552. [Google Scholar] [CrossRef]
- Andrieux, S.; Medina, L.; Herbst, M.; Berglund, L.A.; Stubenrauch, C. Monodisperse Highly Ordered Chitosan/Cellulose Nanocomposite Foams. Compos. Part Appl. Sci. Manuf. 2019, 125, 105516. [Google Scholar] [CrossRef]
- Markevicius, G.; Ladj, R.; Niemeyer, P.; Budtova, T.; Rigacci, A. Ambient-Dried Thermal Superinsulating Monolithic Silica-Based Aerogels with Short Cellulosic Fibers. J. Mater. Sci. 2017, 52, 2210–2221. [Google Scholar] [CrossRef]
- Salas, C.; Nypelö, T.; Rodriguez-Abreu, C.; Carrillo, C.; Rojas, O.J. Nanocellulose Properties and Applications in Colloids and Interfaces. Curr. Opin. Colloid Interface Sci. 2014, 19, 383–396. [Google Scholar] [CrossRef]
- Chen, W.; Yu, H.; Li, Q.; Liu, Y.; Li, J. Ultralight and Highly Flexible Aerogels with Long Cellulose I Nanofibers. Soft Matter 2011, 7, 10360. [Google Scholar] [CrossRef]
- Cervin, N.T.; Johansson, E.; Larsson, P.A.; Wågberg, L. Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying. ACS Appl. Mater. Interfaces 2016, 8, 11682–11689. [Google Scholar] [CrossRef]
- Pettignano, A.; Tanchoux, N.; Cacciaguerra, T.; Vincent, T.; Bernardi, L.; Guibal, E.; Quignard, F. Sodium and Acidic Alginate Foams with Hierarchical Porosity: Preparation, Characterization and Efficiency as a Dye Adsorbent. Carbohydr. Polym. 2017, 178, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Costantini, M.; Barbetta, A. Gas Foaming Technologies for 3D Scaffold Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; ISBN 978-0-08-100980-2. [Google Scholar]
- Barbetta, A.; Gumiero, A.; Pecci, R.; Bedini, R.; Dentini, M. Gas-in-Liquid Foam Templating as a Method for the Production of Highly Porous Scaffolds. Biomacromolecules 2009, 10, 3188–3192. [Google Scholar] [CrossRef]
- Salgado, P.R.; Schmidt, V.C.; Molina Ortiz, S.E.; Mauri, A.N.; Laurindo, J.B. Biodegradable Foams Based on Cassava Starch, Sunflower Proteins and Cellulose Fibers Obtained by a Baking Process. J. Food Eng. 2008, 85, 435–443. [Google Scholar] [CrossRef]
- Versino, F.; López, O.V.; García, M.A. Sunflower Oil Industry By-Product as Natural Filler of Biocomposite Foams for Packaging Applications. J. Polym. Environ. 2021, 29, 1869–1879. [Google Scholar] [CrossRef]
- Capezza, A.J.; Wu, Q.; Newson, W.R.; Olsson, R.T.; Espuche, E.; Johansson, E.; Hedenqvist, M.S. Superabsorbent and Fully Biobased Protein Foams with a Natural Cross-Linker and Cellulose Nanofibers. ACS Omega 2019, 4, 18257–18267. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, J.; Voutilainen, M.; Virtanen, P.; Lassila, L.; Fardim, P. Cellulose Fibre-Reinforced Biofoam for Structural Applications. Materials 2017, 10, 619. [Google Scholar] [CrossRef] [Green Version]
- Jarpa-Parra, M.; Bamdad, F.; Wang, Y.; Tian, Z.; Temelli, F.; Han, J.; Chen, L. Optimization of Lentil Protein Extraction and the Influence of Process PH on Protein Structure and Functionality. LWT-Food Sci. Technol. 2014, 57, 461–469. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J.; Chen, L.; Zhang, L. Chitin Nanofibrils to Stabilize Long-Life Pickering Foams and Their Application for Lightweight Porous Materials. ACS Sustain. Chem. Eng. 2018, 6, 10552–10561. [Google Scholar] [CrossRef]
- Zhang, B.; Cui, Y.; Yin, G.; Li, X.; Liao, L.; Cai, X. Synthesis and Swelling Properties of Protein-Poly(Acrylic Acid- Co -Acrylamide) Superabsorbent Composite. Polym. Compos. 2011, 32, 683–691. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2021. Available online: https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing (accessed on 2 April 2023).
- Ganzevles, R.A.; Kosters, H.; Vliet, T.V.; Stuart, M.A.C.; Jongh, H.H.J.D. Polysaccharide Charge Density Regulating Protein Adsorption to Air / Water Interfaces by Protein/Polysaccharide Complex Formation. J. Phys. Chem. B 2007, 111, 12969–12976. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Zhao, M.; McClements, D.J. Improving the Stability of Wheat Protein-Stabilized Emulsions: Effect of Pectin and Xanthan Gum Addition. Food Hydrocoll. 2015, 43, 377–387. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, Y.; Luo, X.; Wang, Y.; Li, Y.; Li, B.; Liu, S. Impact of PH on the Interaction between Soybean Protein Isolate and Oxidized Bacterial Cellulose at Oil-Water Interface: Dilatational Rheological and Emulsifying Properties. Food Hydrocoll. 2021, 115, 106609. [Google Scholar] [CrossRef]
- Asghari, A.K.; Norton, I.; Mills, T.; Sadd, P.; Spyropoulos, F. Interfacial and Foaming Characterisation of Mixed Protein-Starch Particle Systems for Food-Foam Applications. Food Hydrocoll. 2016, 53, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Perez, A.; Carrara, C.R.; Sa, C.C.; Rodrı, J.M. Interfacial and Foaming Characteristics of Milk Whey Protein and Polysaccharide Mixed Systems. AIChE J. 2010, 56, 1107–1117. [Google Scholar] [CrossRef]
- Ding, M.; Huang, Z.; Jin, Z.; Zhou, C.; Wu, J.; Zhao, D.; Shan, K.; Ke, W.; Zhang, M.; Nian, Y.; et al. The Effect of Fat Content in Food Matrix on the Structure, Rheological Properties and Digestive Properties of Protein. Food Hydrocoll. 2022, 126, 107464. [Google Scholar] [CrossRef]
- Nastaj, M.; Mleko, S.; Terpiłowski, K.; Tomczyńska-Mleko, M. Effect of Sucrose on Physicochemical Properties of High-Protein Meringues Obtained from Whey Protein Isolate. Appl. Sci. 2021, 11, 4764. [Google Scholar] [CrossRef]
- Dollet, B.; Raufaste, C. Rheology of Aqueous Foams. Comptes Rendus Phys. 2014, 15, 731–747. [Google Scholar] [CrossRef] [Green Version]
- Członka, S.; Fischer Kerche, E.; Motta Neves, R.; Strąkowska, A.; Strzelec, K. Bio-Based Rigid Polyurethane Foam Composites Reinforced with Bleached Curauá Fiber. Int. J. Mol. Sci. 2021, 22, 11203. [Google Scholar] [CrossRef]
- Saint-Jalmes, A.; Trégouët, C. Foam Coarsening under a Steady Shear: Interplay between Bubble Rearrangement and Film Thinning Dynamics. Soft Matter 2023, 19, 2090–2098. [Google Scholar] [CrossRef]
- Olu-Owolabi, B.I.; Afolabi, T.A.; Adebowale, K.O. Pasting, Thermal, Hydration, and Functional Properties of Annealed and Heat-Moisture Treated Starch of Sword Bean (Canavalia Gladiata). Int. J. Food Prop. 2011, 14, 157–174. [Google Scholar] [CrossRef]
- George, J. Siddaramaiah High Performance Edible Nanocomposite Films Containing Bacterial Cellulose Nanocrystals. Carbohydr. Polym. 2012, 87, 2031–2037. [Google Scholar] [CrossRef]
- Santos, T.M.; Souza Filho, M.D.S.M.; Caceres, C.A.; Rosa, M.F.; Morais, J.P.S.; Pinto, A.M.B.; Azeredo, H.M.C. Fish Gelatin Films as Affected by Cellulose Whiskers and Sonication. Food Hydrocoll. 2014, 41, 113–118. [Google Scholar] [CrossRef]
- Cruz-Tirado, J.P.; Barros Ferreira, R.S.; Lizárraga, E.; Tapia-Blácido, D.R.; Silva, N.C.C.; Angelats-Silva, L.; Siche, R. Bioactive Andean Sweet Potato Starch-Based Foam Incorporated with Oregano or Thyme Essential Oil. Food Packag. Shelf Life 2020, 23, 100457. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Huang, J.; Lin, N.; Ahmad, I.; Mariano, M.; Dufresne, A.; Thomas, S.; Gałęski, A. Recent Developments in Nanocellulose-Based Biodegradable Polymers, Thermoplastic Polymers, and Porous Nanocomposites. Prog. Polym. Sci. 2018, 87, 197–227. [Google Scholar] [CrossRef]
FC (%) | FS (%) | |||||
---|---|---|---|---|---|---|
Samples | pH 3 | pH 5 | pH 7 | pH 3 | pH 5 | pH 7 |
LP | 113.3 ± 6 a,x | 133.2 ± 6 a,x | 100.0 ± 5 a,x | 56.0 ± 3 a,x | 51.6 ± 5 a,y | 60.3 ± 6 a,z |
LP-0.1CF | 73.1 ± 6 b,x | 87.7 ± 6 b,x | 93.3 ± 6 b,x | 77.0 ± 5 b,x | 57.4 ± 3 b,y | 62.1 ± 4 a,z |
LP-0.5CF | 93.3 ± 6 b,x | 87.6 ± 8 b,x | 86.7 ± 4 b,x | 58.9 ± 3 ac,x | 68.3 ± 4 ac,y | 68.2 ± 4 a,z |
pH 3 | pH 5 | pH 7 | |
---|---|---|---|
LP | 14.6 ± 0.5 | −20.6 ± 0.3 | −24.2 ± 0.2 |
CF | −26.2 ± 2.4 | −26.3 ± 1.3 | −22.9 ± 1.6 |
Sample | Density (g/cm3) | WUR (%) | Solubility (%) | Moisture (%) | WS-75%R.H (gH2O/gDB) | WS-98%R.H (gH2O/gDB) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LP7-0.5 | 0.057 a | ±0.020 | 423 a | ±72 | 78.0 a | ±12.6 | 16.9 a | ±2.2 | 0.04 a | ±0.01 | 0.40 a | ±0.07 |
LP5-0.5 | 0.065 a | ±0.011 | 554 ab | ±86 | 65.5 a | ±15.7 | 20.4 a | ±6.5 | 0.02 a | ±0.01 | 0.39 ac | ±0.05 |
LP3-0.1 | 0.053 a | ±0.011 | 256 ac | ±75 | 90.8 a | ±3.9 | 15.7 a | ±1.1 | 0.03 a | ±0.01 | 0.24 acd | ±0.04 |
LP3-0.5 | 0.055 a | ±0.010 | 667 abd | ±51 | 68.5 a | ±3.2 | 14.1 a | ±6.0 | 0.04 a | ±0.01 | 0.10 b | ±0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarpa-Parra, M.; Moraga-Bustos, S.; Gutiérrez-Turner, E.; Tabilo-Munizaga, G. A Study on a Polymeric Foam Based on Pulse Proteins and Cellulose Fibrils. Materials 2023, 16, 4965. https://doi.org/10.3390/ma16144965
Jarpa-Parra M, Moraga-Bustos S, Gutiérrez-Turner E, Tabilo-Munizaga G. A Study on a Polymeric Foam Based on Pulse Proteins and Cellulose Fibrils. Materials. 2023; 16(14):4965. https://doi.org/10.3390/ma16144965
Chicago/Turabian StyleJarpa-Parra, Marcela, Sergio Moraga-Bustos, Eduardo Gutiérrez-Turner, and Gipsy Tabilo-Munizaga. 2023. "A Study on a Polymeric Foam Based on Pulse Proteins and Cellulose Fibrils" Materials 16, no. 14: 4965. https://doi.org/10.3390/ma16144965
APA StyleJarpa-Parra, M., Moraga-Bustos, S., Gutiérrez-Turner, E., & Tabilo-Munizaga, G. (2023). A Study on a Polymeric Foam Based on Pulse Proteins and Cellulose Fibrils. Materials, 16(14), 4965. https://doi.org/10.3390/ma16144965