The Influence of Various Adhesive Systems and Polishing Methods on Enamel Surface Roughness after Debonding of Orthodontic Brackets: A Three-Dimensional In Vitro Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Error
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The removal of Transbond took significantly longer than Fuji, but there were fewer residues of Transbond on the enamel surface.
- The adhesive did not have a significant effect on the change in roughness before and after treatment except for the use of a prophylactic cup with polishing pastes that resulted in a significant lower roughness change (ΔSa, ΔSq, and ΔSz) for Transbond.
- The sequential use of fine and superfine Sof-Lex discs removed perikymata, resulting in significantly lower enamel surface roughness (Sa, Sq, and Sz) compared to the situation before treatment.
- Perikymata and prisms were observed after polishing with a rotary brush with Depural. This method reduced all roughness parameters, but the differences were significant only in Sa and Sq for Transbond and Sku for Fuji.
- The enamel morphology was also well restored with a prophylactic cup with the polishing pastes. However, the polishing pastes were not able to completely remove the residues of Fuji from the enamel surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pont, H.B.; Ozcan, M.; Bagis, B.; Ren, Y. Loss of surface enamel after bracket debonding: An in-vivo and ex-vivo evaluation. Am. J. Orthod. Dentofac. Orthop. 2010, 138, 387.e1–387.e9. [Google Scholar] [CrossRef] [PubMed]
- Al Shamsi, A.H.; Cunningham, J.L.; Lamey, P.J.; Lynch, E. Three-dimensional measurement of residual adhesive and enamel loss on teeth after debonding of orthodontic brackets: An in-vitro study. Am. J. Orthod. Dentofac. Orthop. 2007, 131, e9–e301. [Google Scholar] [CrossRef]
- Ireland, A.J.; Hosein, I.; Sherriff, M. Enamel loss at bond-up, debond and clean-up following the use of a conventional light-cured composite and a resin-modified glass polyalkenoate cement. Eur. J. Orthod. 2005, 27, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Sugsompian, K.; Tansalarak, R.; Piyapattamin, T. Comparison of the enamel surface roughness from different polishing methods: Scanning electron microscopy and atomic force microscopy investigation. Eur. J. Dent. 2020, 14, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Sharma, P.; Goje, S.K.; Kanzariya, N.; Parikh, M. Comparative evaluation of enamel surface roughness after debonding using four finishing and polishing systems for residual resin removal-an in vitro study. Prog. Orthod. 2019, 20, 18. [Google Scholar] [CrossRef]
- Mohebi, S.; Shafiee, H.A.; Ameli, N. Evaluation of enamel surface roughness after orthodontic bracket debonding with atomic force microscopy. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Dumbryte, I.; Malinauskas, M. In vivo examination of enamel microcracks after orthodontic debonding: Is there a need for detailed analysis? Am. J. Orthod. Dentofac. Orthop. 2021, 159, e103–e111. [Google Scholar] [CrossRef]
- Cochrane, N.J.; Lo, T.W.G.; Adams, G.G.; Schneider, P.M. Quantitative analysis of enamel on debonded orthodontic brackets. Am. J. Orthod. Dentofac. Orthop. 2017, 152, 312–319. [Google Scholar] [CrossRef]
- Øgaard, B.; Rolla, G. Oral microbiological changes, long-term enamel alterations due to decalcification, and caries prophylactic aspects. In Orthodontic Materials: Scientific and Clinical Aspects; Brantley, W.A., Eliades, T., Eds.; Thieme: Stuttgart, Germany, 2001; pp. 123–142. [Google Scholar]
- Bollen, C.M.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997, 13, 258–269. [Google Scholar] [CrossRef]
- Janiszewska-Olszowska, J.; Tandecka, K.; Szatkiewicz, T.; Sporniak-Tutak, K.; Grocholewicz, K. Three-dimensional quantitative analysis of adhesive remnants and enamel loss resulting from debonding orthodontic molar tubes. Head Face Med. 2014, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Zachrisson, B.U.; Årthun, J. Enamel surface appearance after various debonding techniques. Am. J. Orthod. 1979, 75, 121–127. [Google Scholar] [CrossRef]
- Alessandri Bonetti, G.; Zanarini, M.; Incerti Parenti, S.; Lattuca, M.; Marchionni, S.; Gatto, M.R. Evaluation of enamel surfaces after bracket debonding: An in-vivo study with scanning electron microscopy. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Eminkahyagil, N.; Arman, A.; Cetinsahin, A.; Karabulut, E. Effect of resin-removal methods on enamel and shear bond strength of rebonded brackets. Angle Orthod. 2006, 76, 314–321. [Google Scholar] [PubMed]
- Sigiliao, L.C.; Marquezan, M.; Elias, C.N.; Ruellas, A.C.; Sant’Anna, E.F. Efficiency of different protocols for enamel clean-up after bracket debonding: An in vitro study. Dent. Press J. Orthod. 2015, 20, 78–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degrazia, F.W.; Genari, B.; Ferrazzo, V.A.; Santos-Pinto, A.D.; Grehs, R.A. Enamel roughness changes after removal of orthodontic adhesive. Dent. J. 2018, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.T.L.; Borsatto, M.C.; Saraiva, M.C.P.; Matsumoto, M.A.N.; Torres, C.P.; Romano, F.L. Evaluation of enamel roughness in vitro after orthodontic bracket debonding using different methods of residual adhesive removal. Turk. J. Orthod. 2020, 33, 43–51. [Google Scholar] [CrossRef]
- Karan, S.; Kircelli, B.H.; Tasdelen, B. Enamel surface roughness after debonding. Angle Orthod. 2010, 80, 1081–1088. [Google Scholar] [CrossRef]
- Sfondrini, M.F.; Scribante, A.; Fraticelli, D.; Roncallo, S.; Gandini, P. Epidemiological survey of different clinical techniques of orthodontic bracket debonding and enamel polishing. J. Orthod. Sci. 2015, 4, 123–127. [Google Scholar] [CrossRef]
- Zarrinnia, K.; Eid, N.M.; Kehoe, M.J. The effect of different debonding techniques on the enamel surface: An in vitro qualitative study. Am. J. Orthod. Dentofac. Orthop. 1995, 108, 284–293. [Google Scholar] [CrossRef]
- Cardoso, L.A.; Valdrighi, H.C.; Vedovello Filho, M.; Correr, A.B. Effect of adhesive remnant removal on enamel topography after bracket debonding. Dent. Press J. Orthod. 2014, 19, 105–112. [Google Scholar] [CrossRef]
- Eliades, T.; Gioka, C.; Eliades, G.; Makou, M. Enamel surface roughness following debonding using two resin grinding methods. Eur. J. Orthod. 2004, 26, 333–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fjeld, M.; Ogaard, B. Scanning electron microscopic evaluation of enamel surfaces exposed to 3 orthodontic bonding systems. Am. J. Orthod. Dentofac. Orthop. 2006, 130, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Norevall, L.I.; Marcusson, A.; Persson, M. A clinical evaluation of a glass ionomer cement as an orthodontic bonding adhesive compared with an acrylic resin. Eur. J. Orthod. 1996, 18, 373–384. [Google Scholar] [CrossRef] [PubMed]
- David, V.A.; Staley, R.N.; Bigelow, H.F.; Jakobsen, J.R. Remnant amount and cleanup for 3 adhesives after debracketing. Am. J. Orthod. Dentofac. Orthop. 2002, 121, 291–296. [Google Scholar] [CrossRef]
- Cacciafesta, V.; Sfondrini, M.F.; De Angelis, M.; Scribante, A.; Klersy, C. Effect of water and saliva contamination on shear bond strength of brackets bonded with conventional, hydrophilic, and self-etching primers. Am. J. Orthod. Dentofac. Orthop. 2003, 123, 633–640. [Google Scholar] [CrossRef]
- Cacciafesta, V.; Sfondrini, M.F.; Scribante, A.; De Angelis, M.; Klersy, C. Effect of blood contamination on shear bond strength of brackets bonded with a self-etching primer combined with a resin-modified glass ionomer. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 703–708. [Google Scholar] [CrossRef]
- Valente, R.M.; De Rijk, W.G.; Drummond, J.L.; Evans, C.A. Etching conditions for resin-modified glass ionomer cement for orthodontic brackets. Am. J. Orthod. Dentofac. Orthop. 2002, 121, 516–520. [Google Scholar] [CrossRef]
- Mickenautsch, S.; Yengopal, V.; Banerjee, A. Retention of orthodontic brackets bonded with resin-modified GIC versus composite resin adhesives—A quantitative systematic review of clinical trials. Clin. Oral Investig. 2012, 16, 1–14. [Google Scholar] [CrossRef]
- Armstrong, S.; Breschi, L.; Ozcan, M.; Pfefferkorn, F.; Ferrari, M.; Van Meerbeek, B. Academy of Dental Materials guidance on in vitro testing of dental composite bonding effectiveness to dentin/enamel using micro-tensile bond strength (µTBS) approach. Dent. Mater. 2017, 33, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Mattick, C.R.; Hobson, R.S. A comparative micro-topographic study of the buccal enamel of different tooth types. J. Orthod. 2000, 27, 143–148. [Google Scholar] [CrossRef]
- Brauchli, L.M.; Baumgartner, E.M.; Ball, J.; Wichelhaus, A. Roughness of enamel surfaces after different bonding and debonding procedures: An in vitro study. J. Orofac Orthop. 2011, 72, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.G.; da Silva, E.M.; Vilella, O.V. A novel method using confocal laser scanning microscopy for three-dimensional analysis of human dental enamel subjected to ceramic bracket debonding. Microsc Microanal 2020, 26, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.G.; Nouer, D.F.; Silva, N.P.; Garbui, I.U.; Correr-Sobrinho, L.; Nouer, P.R. Qualitative and quantitative evaluation of human dental enamel after bracket debonding: A noncontact three-dimensional optical profilometry analysis. Clin. Oral Investig. 2014, 18, 1853–1864. [Google Scholar] [CrossRef]
- Vilchis, R.J.; Hotta, Y.; Yamamoto, K. Examination of enamel-adhesive interface with focused ion beam and scanning electron microscopy. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 646–650. [Google Scholar] [CrossRef]
- van Waes, H.; Matter, T.; Krejci, I. Three-dimensional measurement of enamel loss caused by bonding and debonding of orthodontic brackets. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO 25178-2:2021; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 2021.
- Kim, J.H.; Kim, K.B.; Kim, W.C.; Kim, J.H.; Kim, H.Y. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique. Korean J. Orthod. 2014, 44, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rix, D.; Foley, T.F.; Mamandras, A. Comparison of bond strength of three adhesives: Composite resin, hybrid GIC, and glass-filled GIC. Am. J. Orthod. Dentofac. Orthop. 2001, 119, 36–42. [Google Scholar] [CrossRef]
- Rodrigues, D.S.; Buciumeanu, M.; Martinelli, A.E.; Nascimento, R.M.; Henriques, B.; Silva, F.S.; Souza, J.C.M. Mechanical strength and wear of dental glass-ionomer and resin composites affected by porosity and chemical composition. J. Bio.-Tribo-Corros. 2015, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Faria-Junior, E.M.; Guiraldo, R.D.; Berger, S.B.; Correr, A.B.; Correr-Sobrinho, L.; Contreras, E.F.; Lopes, M.B. In-vivo evaluation of the surface roughness and morphology of enamel after bracket removal and polishing by different techniques. Am. J. Orthod. Dentofac. Orthop. 2015, 147, 324–329. [Google Scholar] [CrossRef]
- Ozer, T.; Basaran, G.; Kama, J.D. Surface roughness of the restored enamel after orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 368–374. [Google Scholar] [CrossRef]
- Ahrari, F.; Akbari, M.; Akbari, J.; Dabiri, G. Enamel surface roughness after debonding of orthodontic brackets and various clean-up techniques. J. Dent. 2013, 10, 82–93. [Google Scholar]
- Retief, D.H.; Denys, F.R. Finishing of enamel surfaces after debonding of orthodontic attachments. Angle Orthod. 1979, 49, 1–10. [Google Scholar] [PubMed]
- Vidor, M.M.; Felix, R.P.; Marchioro, E.M.; Hahn, L. Enamel surface evaluation after bracket debonding and different resin removal methods. Dent. Press J. Orthod. 2015, 20, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Sfondrini, M.F.; Cacciafesta, V.; Scribante, A.; Klersy, C. Plasma arc versus halogen light curing of orthodontic brackets: A 12-month clinical study of bond failures. Am. J. Orthod. Dentofac. Orthop. 2004, 125, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Hama, T.; Namura, Y.; Nishio, Y.; Yoneyama, T.; Shimizu, N. Effect of orthodontic adhesive thickness on force required by debonding pliers. J. Oral. Sci. 2014, 56, 185–190. [Google Scholar] [CrossRef] [Green Version]
Material (Batch Number) | Manufacturer | Material Type | Composition | Application Procedure |
---|---|---|---|---|
Unitek Etching Gel (NE06102) | 3M, St. Paul, MN, USA | Etchant | Phosphoric acid (35 wt.%), water, amorphous silica | Apply to the enamel, wait for 15 s, and rinse with water for 15 s. |
Transbond XT Light Cure Orthodontic Adhesive Primer (NE10102) | 3M, St. Paul, MN, USA | Adhesive primer | Bis-GMA, TEGDMA, 4-(dimethylamino)-benzeneethanol | Apply to the etched enamel, light-cure for 3 s. |
Transbond XT Light Cure Adhesive Paste (NE18405) | 3M, St. Paul, MN, USA | Resin composite | Silane-treated quartz and silica, Bis-GMA, Bis-DMA, diphenyliodonium hexafluorophosphate, triphenylantimony | Apply to the base of the bracket, seat with moderate pressure, remove excess, and light-cure for 4 × 3 s. |
GC Ortho Conditioner (2102121) | GC, Tokyo, Japan | Conditioner | 10% polyacrylic acid solution | Apply to the enamel, wait for 20 s, and rinse with water for 20 s. |
Fuji ORTHO LC Capsule (2105151) | GC, Tokyo, Japan | Resin-modified glass ionomer | Glass particles, HEMA, polyacrylic acid, 2-hydroxy-1,3 dimethacryloxypropane, UDMA, initiating system | Apply to the base of the bracket, seat with moderate pressure, remove excess, and light-cure for 4 × 3 s. |
Parameter | Dahlberg Error | Relative Dahlberg Error | Intraclass Correlation Coefficient | p-Value 1 |
---|---|---|---|---|
Sa | 0.0077 | 5.9% | 0.848 | 0.239 |
Sku | 0.3028 | 8.1% | 0.715 | 0.242 |
Sq | 0.0063 | 3.8% | 0.933 | 0.189 |
Sz | 0.0580 | 5.0% | 0.917 | 0.412 |
Transbond Median (min; max) | Fuji Median (min; max) | p-Value 1 | ||
---|---|---|---|---|
T1 | Sa (µm) | 0.15 (0.08; 0.25) | 0.17 (0.08; 0.24) | 0.624 |
Sku | 3.88 (2.85; 5.28) | 3.97 (3.02; 7.17) | 0.333 | |
Sq (µm) | 0.20 (0.10; 0.32) | 0.21 (0.10; 0.32) | 0.414 | |
Sz (µm) | 1.51 (0.69; 2.62) | 1.57 (0.75; 2.18) | 0.870 | |
T2-T1 | ΔSa (µm) | 0.02 (−0.07; 0.27) | 0.04 (−0.06; 0.17) | 0.131 |
ΔSku | −0.55 (−1.95; 3.66) | −0.76 (−3.59; 1.01) | 0.222 | |
ΔSq (µm) | 0.02 (−0.11; 0.48) | 0.05 (−0.09; 0.21) | 0.178 | |
ΔSz (µm) | 0.11 (−1.26; 6.00) | 0.24 (−0.40; 1.16) | 0.505 |
Sof-Lex Discs | Depural | Polishing Pastes | |||||||
---|---|---|---|---|---|---|---|---|---|
Transbond Median (min; max) | Fuji Median (min; max) | p-Value | Transbond Median (min; max) | Fuji Median (min; max) | p-Value | Transbond Median (min; max) | Fuji Median (min; max) | p-Value | |
ΔSa (µm) | −0.12 A (−0.17; −0.07) | −0.15 a (−0.18; −0.08) | 0.406 | −0.03 B (−0.13; 0.03) | −0.04 b (−0.09; 0.16) | 0.949 | −0.05 B (−0.07; 0.09) | 0.06 b (−0.04; 0.18) | 0.025 |
ΔSku | 2.60 A (1.42; 5.27) | 2.16 a (0.30; 5.16) | 0.180 | −0.43 B (−2.15; 1.44) | −0.59 b (−4.33; −0.34) | 0.406 | −0.33 B (−1.82; 0.62) | 0.17 b (−2.85; 1.24) | 0.749 |
ΔSq (µm) | −0.15 A (−0.21; −0.09) | −0.19 a (−0.26; −0.09) | 0.180 | −0.06 B (−0.17; 0.03) | −0.06 b (−0.12; 0.20) | 0.749 | −0.06 B (−0.10; 0.11) | 0.10 b (−0.06; 0.19) | 0.025 |
ΔSz (µm) | −1.01 A (−1.74; −0.52) | −1.20 a (−1.58; −0.19) | 0.482 | −0.20 B (−0.66; 0.30) | −0.57 ab (−0.83; 0.95) | 0.406 | −0.59 AB (−1.09; 0.37) | 0.55 b (−0.57; 1.07) | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Křivková, T.; Tichý, A.; Tycová, H.; Kučera, J. The Influence of Various Adhesive Systems and Polishing Methods on Enamel Surface Roughness after Debonding of Orthodontic Brackets: A Three-Dimensional In Vitro Evaluation. Materials 2023, 16, 5107. https://doi.org/10.3390/ma16145107
Křivková T, Tichý A, Tycová H, Kučera J. The Influence of Various Adhesive Systems and Polishing Methods on Enamel Surface Roughness after Debonding of Orthodontic Brackets: A Three-Dimensional In Vitro Evaluation. Materials. 2023; 16(14):5107. https://doi.org/10.3390/ma16145107
Chicago/Turabian StyleKřivková, Tereza, Antonín Tichý, Hana Tycová, and Josef Kučera. 2023. "The Influence of Various Adhesive Systems and Polishing Methods on Enamel Surface Roughness after Debonding of Orthodontic Brackets: A Three-Dimensional In Vitro Evaluation" Materials 16, no. 14: 5107. https://doi.org/10.3390/ma16145107
APA StyleKřivková, T., Tichý, A., Tycová, H., & Kučera, J. (2023). The Influence of Various Adhesive Systems and Polishing Methods on Enamel Surface Roughness after Debonding of Orthodontic Brackets: A Three-Dimensional In Vitro Evaluation. Materials, 16(14), 5107. https://doi.org/10.3390/ma16145107