Enhancing the Performance of Organic Phototransistors Based on Oriented Floating Films of P3HT Assisted by Al-Island Deposition
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Device Fabrication and Thin-Film Preparation
2.3. Characterization
3. Results and Discussion
3.1. Thin-Film Characterization
3.2. Device Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.G.; Kim, S.H.; Park, J.; Kim, G.S.; Park, J.H.; Saraswat, K.C.; Kim, J.; Yu, H.Y. Infrared Detectable MoS(2) Phototransistor and Its Application to Artificial Multilevel Optic-Neural Synapse. ACS Nano 2019, 13, 10294–10300. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.-E.; Basu, R.; Mukhopadhyay, B.; Basu, P.K. Design and Modeling of GeSn-Based Heterojunction Phototransistors for Communication Applications. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 425–433. [Google Scholar] [CrossRef]
- Qin, Y.; Long, S.; He, Q.; Dong, H.; Jian, G.; Zhang, Y.; Hou, X.; Tan, P.; Zhang, Z.; Lu, Y.; et al. Amorphous Gallium Oxide-Based Gate-Tunable High-Performance Thin Film Phototransistor for Solar-Blind Imaging. Adv. Electron. Mater. 2019, 5, 1900389. [Google Scholar] [CrossRef]
- Yin, L.; Han, C.; Zhang, Q.; Ni, Z.; Zhao, S.; Wang, K.; Li, D.; Xu, M.; Wu, H.; Pi, X.; et al. Synaptic silicon-nanocrystal phototransistors for neuromorphic computing. Nano Energy 2019, 63, 103859. [Google Scholar] [CrossRef]
- Nanni, J.; Tegegne, Z.G.; Viana, C.; Tartarini, G.; Algani, C.; Polleux, J.-L. SiGe Photo-Transistor for Low-Cost SSMF-Based Radio-Over-Fiber Applications at 850 nm. IEEE J. Quantum Electron. 2019, 55, 4600109. [Google Scholar] [CrossRef]
- Wu, Z.; Zhai, Y.; Yao, W.; Eedugurala, N.; Zhang, S.; Huang, L.; Gu, X.; Azoulay, J.D.; Ng, T.N. The Role of Dielectric Screening in Organic Shortwave Infrared Photodiodes for Spectroscopic Image Sensing. Adv. Funct. Mater. 2018, 28, 1805738. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Liu, J.; Zhang, J.; Zhou, G.; Luo, N.; Zhao, N. Flexible Organic/Inorganic Hybrid Near-Infrared Photoplethysmogram Sensor for Cardiovascular Monitoring. Adv. Mater 2017, 29, 1700975. [Google Scholar] [CrossRef]
- Lee, M.Y.; Hong, J.; Lee, E.K.; Yu, H.; Kim, H.; Lee, J.U.; Lee, W.; Oh, J.H. Highly Flexible Organic Nanofiber Phototransistors Fabricated on a Textile Composite for Wearable Photosensors. Adv. Funct. Mater. 2016, 26, 1445–1453. [Google Scholar] [CrossRef]
- Huang, F.; Wang, X.; Xu, K.; Liang, Y.; Peng, Y.; Liu, G. Broadband organic phototransistor with high photoresponse from ultraviolet to near-infrared realized via synergistic effect of trilayer heterostructure. J. Mater. Chem. C 2018, 6, 8804–8811. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Hu, W. Organic photodiodes and phototransistors toward infrared detection: Materials, devices, and applications. Chem. Soc. Rev. 2020, 49, 653–670. [Google Scholar] [CrossRef]
- Zhang, L.; Song, I.; Ahn, J.; Han, M.; Linares, M.; Surin, M.; Zhang, H.J.; Oh, J.H.; Lin, J. pi-Extended perylene diimide double-heterohelicenes as ambipolar organic semiconductors for broadband circularly polarized light detection. Nat. Commun. 2021, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ji, D.; Fuchs, H.; Hu, W.; Li, T. Recent Progress in Organic Phototransistors: Semiconductor Materials, Device Structures and Optoelectronic Applications. ChemPhotoChem 2019, 4, 9–38. [Google Scholar] [CrossRef]
- Pal, T.; Arif, M.; Khondaker, S.I. High performance organic phototransistor based on regioregular poly(3-hexylthiophene). Nanotechnology 2010, 21, 325201. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, D.; Yang, S.; Zou, B. Solution-processed P3HT-based photodetector with field-effect transistor configuration. Appl. Phys. A 2014, 116, 1511–1516. [Google Scholar] [CrossRef]
- Dierckx, W.; Oosterbaan, W.D.; Bolsee, J.C.; Cardinaletti, I.; Maes, W.; Boyen, H.G.; D’Haen, J.; Nesladek, M.; Manca, J. Organic phototransistors using poly(3-hexylthiophene) nanofibres. Nanotechnology 2015, 26, 065201. [Google Scholar] [CrossRef]
- Park, K.S.; Cho, B.; Baek, J.; Hwang, J.K.; Lee, H.; Sung, M.M. Single-Crystal Organic Nanowire Electronics by Direct Printing from Molecular Solutions. Adv. Funct. Mater. 2013, 23, 4776–4784. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Li, J.; Leung, B.H.; Poon, C.C.; Ong, B.S.; Zhang, Y.; Zhao, N. A high-sensitivity near-infrared phototransistor based on an organic bulk heterojunction. Nanoscale 2013, 5, 11850–11855. [Google Scholar] [CrossRef]
- Bhargava, K.; Singh, V. High-sensitivity organic phototransistors prepared by floating film transfer method. Appl. Phys. Express 2016, 9, 091601. [Google Scholar] [CrossRef]
- Sharma, S.; Vats, A.K.; Tang, L.; Kaishan, F.; Toyoda, J.; Nagamatsu, S.; Ando, Y.; Tamagawa, M.; Tanaka, H.; Pandey, M.; et al. High field-effect mobility in oriented thin films of D-A type semiconducting polymers by engineering stable interfacial system. Chem. Eng. J. 2023, 469, 143932. [Google Scholar] [CrossRef]
- Kumari, N.; Pandey, M.; Hamada, K.; Hirotani, D.; Nagamatsu, S.; Hayase, S.; Pandey, S.S. Role of device architecture and AlOX interlayer in organic Schottky diodes and their interpretation by analytical modeling. J. Appl. Phys. 2019, 126, 125501. [Google Scholar] [CrossRef]
- Pei, Z.; Devi, B.P.; Thiyagu, S. Study on the Al–P3HT:PCBM interfaces in electrical stressed polymer solar cell by X-ray photoelectron spectroscopy. Sol. Energy Mater. Sol. Cells 2014, 123, 1–6. [Google Scholar] [CrossRef]
- Gensch, M.; Schwartzkopf, M.; Brett, C.J.; Schaper, S.J.; Li, N.; Chen, W.; Liang, S.; Drewes, J.; Polonskyi, O.; Strunskus, T.; et al. Correlating Optical Reflectance with the Topology of Aluminum Nanocluster Layers Growing on Partially Conjugated Diblock Copolymer Templates. ACS Appl. Mater Interfaces 2021, 13, 56663–56673. [Google Scholar] [CrossRef]
- Pauly, N.; Yubero, F.; Tougaard, S. Quantitative analysis of satellite structures in XPS spectra of gold and silver. Appl. Surf. Sci. 2016, 383, 317–323. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, L.; Ye, Y.; Han, Y.; Xu, Q.; Kim, K.-J.; Ihm, K.; Kim, B.; Bechtel, H.; Martin, M.; et al. Engineering the metal–organic interface by transferring a high-quality single layer graphene on top of organic materials. Carbon 2015, 87, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Zhao, W.; Ju, H.; Zhang, L.; Ye, Y.; Zhang, W.; Zhu, J. Electronic structures and chemical reactions at the interface between Li and regioregular poly (3-hexylthiophene). Org. Electron. 2012, 13, 1060–1067. [Google Scholar] [CrossRef]
- Brown, P.J.; Thomas, D.S.; Köhler, A.; Wilson, J.S.; Kim, J.-S.; Ramsdale, C.M.; Sirringhaus, H.; Friend, R.H. Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys. Rev. B 2003, 67, 064203. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Vats, A.K.; Pandey, M.; Nagamatsu, S.; Chen, J.-C.; Pandey, S.S. Unraveling the Implications of Macromolecular Orientation on the Planar and Vertical Charge Transport in Organic Electronic Devices. ACS Appl. Polym. Mater. 2022, 4, 8315–8323. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, M.; Kim, H.; Heo, K.; Ree, M. Investigation of nanomorphology change in bulk heterojunction films using synchrotron x-ray diffraction technique. J. Korean Phys. Soc. 2010, 56, 2088–2092. [Google Scholar] [CrossRef]
- Singh, V.; Thakur, A.K.; Pandey, S.S.; Takashima, W.; Kaneto, K. Characterization of Depletion Layer using Photoluminescence Technique. Appl. Phys. Express 2008, 1, 021801. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Lai, D.; He, L.; Yujie, Y.; Li, E.; Liu, Y.; Zeng, H.; Chen, H.; Guo, T. High-Performance Vertical Organic Phototransistors Enhanced by Ferroelectrics. ACS Appl. Mater Interfaces 2021, 13, 1035–1042. [Google Scholar] [CrossRef]
- Han, T.; Shou, M.; Liu, L.; Xie, Z.; Ying, L.; Jiang, C.; Wang, H.; Yao, M.; Deng, H.; Jin, G.; et al. Ultrahigh photosensitive organic phototransistors by photoelectric dual control. J. Mater. Chem. C 2019, 7, 4725–4732. [Google Scholar] [CrossRef]
- Shin, H.; Kim, D.; Park, J.; Kim, D.Y. Improving Photosensitivity and Transparency in Organic Phototransistor with Blending Insulating Polymers. Micromachines 2023, 14, 620. [Google Scholar] [CrossRef] [PubMed]
- Aynehband, S.; Arthur, J.N.; Mohammadi, M.; Nunzi, J.-M.; Yambem, S.D.; Simchi, A. Improved sensitivity of P3HT-based photo-transistors blended with perovskite nanocrystals. Org. Electron. 2023, 114, 106744. [Google Scholar] [CrossRef]
- Kim, T.; Lee, C.; Kim, Y. Near-Infrared Organic Phototransistors with Polymeric Channel/Dielectric/Sensing Triple Layers. Micromachines 2020, 11, 1061. [Google Scholar] [CrossRef]
- Yasin, M.; Tauqeer, T.; Karimov, K.S.; San, S.E.; Kösemen, A.; Yerli, Y.; Tunc, A.V. P3HT:PCBM blend based photo organic field effect transistor. Microelectron. Eng. 2014, 130, 13–17. [Google Scholar] [CrossRef]
Parameter | 0 nm Al | 2 nm Al | 3 nm Al | 5 nm Al |
---|---|---|---|---|
μsat (cm2 V−1 s−1) | 2.35 × 10−2 | 2.37 × 10−2 | 2.2 × 10−2 | 1.9 × 10−2 |
on–off ratio | 2 × 103 | 3 × 103 | 6 × 103 | 3 × 104 |
off current (nA) | 81 | 29 | 14 | 1.8 |
Vth (V) | 21 | 16.2 | 16.6 | 13.5 |
photosensitivity | 240 | 1 × 103 | 2 × 103 | 2 × 105 |
R (A W−1) | 226 | 497 | 447 | 339 |
D (Jones) | 2 × 1013 | 8.4 × 1013 | 1 × 1014 | 3 × 1014 |
EQE (%) | 53,271 | 117,150 | 105,364 | 78,257 |
Organic Semiconductor | Wavelength (nm), Light Intensity (mW cm−2) | μsat (cm2 V−1 s−1) | Photosensitivity | R (A W−1) | Ref. |
---|---|---|---|---|---|
P3HT | 532, 0.4 | 7.22 × 10−4 | 104 | 10 | [18] |
P3HT | 630, 0.4 | 1.5 × 10−3 | 6.8 × 103 | 250 | [15] |
P3HT blend | 600, 100 | 7 × 10−2 | 21 | [33] | |
P3HT | 905, 3.8 | 3.2 × 10−4 | 104 | - | [34] |
P3HT blend | 300–700, 100 | - | 100 | 3 | [35] |
P3HT | 525, 0.3 | 2 × 10−2 | 105 | 339 | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahane, T.K.; Sharma, S.; Desu, M.; Ando, Y.; Pandey, S.S.; Singh, V. Enhancing the Performance of Organic Phototransistors Based on Oriented Floating Films of P3HT Assisted by Al-Island Deposition. Materials 2023, 16, 5249. https://doi.org/10.3390/ma16155249
Lahane TK, Sharma S, Desu M, Ando Y, Pandey SS, Singh V. Enhancing the Performance of Organic Phototransistors Based on Oriented Floating Films of P3HT Assisted by Al-Island Deposition. Materials. 2023; 16(15):5249. https://doi.org/10.3390/ma16155249
Chicago/Turabian StyleLahane, Tejswini K., Shubham Sharma, Moulika Desu, Yoshito Ando, Shyam S. Pandey, and Vipul Singh. 2023. "Enhancing the Performance of Organic Phototransistors Based on Oriented Floating Films of P3HT Assisted by Al-Island Deposition" Materials 16, no. 15: 5249. https://doi.org/10.3390/ma16155249
APA StyleLahane, T. K., Sharma, S., Desu, M., Ando, Y., Pandey, S. S., & Singh, V. (2023). Enhancing the Performance of Organic Phototransistors Based on Oriented Floating Films of P3HT Assisted by Al-Island Deposition. Materials, 16(15), 5249. https://doi.org/10.3390/ma16155249