A Study on Long-Term Oxidation and Thermal Shock Performance of Nanostructured YSZ/NiCrAlY TBC with a Less Dense Bond Coat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Manufacturing
2.2. Experimental Investigations
3. Results and Discussion
4. Conclusions
- The inter-lamellar pores produced during the deposition of the bond coat by APS do not affect the high resistance of the nanostructured TBCs in case of long-term isothermal oxidation at 1150 °C.
- The ceramic layer withstands the high temperature for 800 h of maintaining without showing major exfoliation.
- SEM analysis revealed fine cracks in the ceramic coating after 400 h of isothermal oxidation, and larger vertical cracks after 800 h of high-temperature maintaining.
- The inter-lamellar pores ensure the formation of the TGO and its spread on a larger area during high-temperature exposure, limiting the increase in thickness.
- It seems that after 800 h cumulated of maintaining at temperature, the bond coat consumes almost the entire free volume of the bond coat.
- An increase in both ceramic and bond-coat compaction was also observed after prolonged high-temperature exposure, and this was also sustained by the adhesion strength determined by the reduction of the cone-projected area during scratch testing.
- In extreme conditions, under high-temperature thermal shock cycles, the nanostructured YSZ/NiCrAlY system resisted for 1242 cycles at 1200 °C and 555 cycles at 1250 °C.
Author Contributions
Funding
Conflicts of Interest
References
- Singh, R.; Ameyugo, G.; Noppel, F. Jet engine design drivers: Past, present and future. In Innovation in Aeronautics; Young, T.M., Hirst, M., Eds.; Woodhead Publishing Ltd.: Philadelphia, PA, USA, 2012; pp. 56–82. [Google Scholar] [CrossRef]
- Konter, M.; Bossmann, H.P. Materials and coatings developments for gas turbine systems and components. In Modern Gas Turbine Systems. High Efficiency, Low Emission, Fuel Flexible Power Generation; Jansohn, P., Ed.; Woodhead Publishing Series in Energy 2013, Ltd.: Philadelphia, PA, USA, 2013; pp. 327–380. [Google Scholar] [CrossRef]
- Wang, T. An overview of IGCC systems. In Integrated Gasification Combined Cycle (IGCC) Technologies; Wang., T., Stiegel, G., Eds.; Woodhead Publishing Ltd.: Philadelphia, PA, USA, 2017; pp. 1–80. [Google Scholar] [CrossRef]
- Wang, D.; Huang, X.; Patnaik, P. Design and modeling of multiple layered TBC system with high reflectance. J. Mater. Sci. 2006, 41, 6245–6255. [Google Scholar] [CrossRef]
- Łatka, L. Thermal Barrier Coatings Manufactured by Suspension Plasma Spraying—A Review. Adv. Mater. Sci. 2018, 18, 95–117. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, V.; Dwivedi, G.; Sampath, S. Multilayer, Multimaterial Thermal Barrier Coating Systems: Design, Synthesis, and Performance Assessment. J. Am. Ceram. 2015, 98, 1769–1777. [Google Scholar] [CrossRef]
- Mondal, K.; Nuñez, L.; Downey, C.M.; van Rooyen, I.J. Thermal Barrier Coatings Overview: Design, Manufacturing, and Applications in High-Temperature Industries. Ind. Eng. Chem. Res. 2021, 60, 17. [Google Scholar] [CrossRef]
- Lim, L.Y.; Meguid, S.A. Temperature dependent dynamic growth of thermally grown oxide in thermal barrier coating. Mater. Des. 2019, 164, 107543. [Google Scholar] [CrossRef]
- Dudnik, E.V.; Lakiza, S.N.; Hrechanyuk, I.N.; Ruban, A.K.; Redko, V.P.; Marek, I.O.; Shmibelsky, V.B.; Makudera, A.A.; Hrechanyuk, N.I. Protective and functional powder coatings thermal barrier coatings based on ZrO2 solid solutions. Powder Metal. Met. Ceram. 2020, 59, 80–108. [Google Scholar] [CrossRef]
- Sadowski, T.; Golewski, P. State of Arts in Experimental Testing of TBCs Systems—Literature Analysis. In Loadings in Thermal Barrier Coatings of Jet Engine Turbine Blades; Springer Briefs in Applied Sciences and Technology: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Guo, X.; Lu, Z.; Jung, Y.G.; Zhang, J. Overview of Lanthanum Zirconate-Based Thermal Barrier Coatings. In Novel Lanthanum Zirconate-based Thermal Barrier Coatings for Energy Applications; Springer: Cham, Switzerland, 2021; pp. 1–11. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, L.; Zhu, W. Introduction. In Thermal Barrier Coatings: Failure Theory and Evaluation Technology; Springer: Singapore, 2022; pp. 1–26. [Google Scholar] [CrossRef]
- Gupta, M. Design of Thermal Barrier Coatings Modelling Approach. Ph.D. Thesis, University West, Trollhattan, Sweden, 2014. ISBN 978-91-87531-06-4. [Google Scholar]
- Clarke, D.R.; Phillpot, S.R. Thermal barrier coating materials. Mater. Today 2005, 8, 22–29. [Google Scholar] [CrossRef]
- Saini, A.K.; Das, D.; Pathak, M.K. Thermal Barrier Coatings -Applications, Stability and Longevity Aspects. Prog. Eng. 2012, 38, 3173–3179. [Google Scholar] [CrossRef] [Green Version]
- Peng, X. Metallic coatings for high-temperature oxidation resistance. In Thermal Barrier Coatings; Xu, H., Guo, H., Eds.; Woodhead Publishing Ltd.: Philadelphia, PA, USA, 2011; pp. 53–74. [Google Scholar]
- Peng, R.L.; Zhang, P.; Li, X.H. Durable MCrAlX Coatings for Demanding Applications in Gas Turbines, KME 703; Energiforsk: Stockholm, Sweden, 2018; ISBN 978-91-7673-493-3. [Google Scholar]
- Zhang, P. Performance of MCrAlX Coatings: Oxidation, Hot corrosion and Interdiffusion. Diploma Thesis, Linköping University, Linköping, Sweden, 2019. [Google Scholar]
- Littner, A.; Pedraza, F.; Kennedy, A.D.; Moretto, P.; Peich, L.; Weber, T.; Schutze, M. Performance and Thermal Stability of Pt-modified Al-diffusion Coatings for Superalloys under Cyclic and Isothermal Conditions. Mater. High Temp. 2005, 22, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Das, D.K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys. Prog. Mater. Sci. 2013, 58, 151–182. [Google Scholar] [CrossRef]
- Góral, M.; Pytel, M.; Kubaszek, T.; Drajewicz, M.; Simka, W.; Nieużyła, L. The new concept of thermal barrier coatings with Pt + Pd/Zr/Hf-modified aluminide bond coat and ceramic layer formed by PS-PVD method. High Temp. Mater. Process. 2021, 40, 281–286. [Google Scholar] [CrossRef]
- Barwinska, I.; Kopec, M.; Kukla, D.; Senderowski, C.; Kowalewski, Z.L. Thermal Barrier Coatings for High-Temperature Performance of Nickel-Based Superalloys: A Synthetic Review. Coatings 2023, 13, 769. [Google Scholar] [CrossRef]
- Song, J.; Wang, L.; Yao, J.; Dong, H. Multi-Scale Structural Design and Advanced Materials for Thermal Barrier Coatings with High Thermal Insulation: A Review. Coatings 2023, 13, 343. [Google Scholar] [CrossRef]
- Nevrla, B.; Ctibor, P.; Koudelkova, V.; Lukac, F.; Neufuss, K. Plasma spraying of natural kaolinite and metakaolinite Caolinita natural y metacaolinita preparada por proyección de plasma. Bol. Soc. Esp. Cerám. 2021, 60, 274–282. [Google Scholar] [CrossRef]
- Yang, J.; Han, Y.; Shahid, M.; Pan, W.; Zhao, M.; Wu, w.; Wan, C. A promising material for thermal barrier coating: Pyrochlore-related compound Sm2FeTaO7. Scr. Mater. 2018, 149, 49–52. [Google Scholar] [CrossRef]
- Owoseni, T.A.; Rincon Romero, A.; Pala, Z.; Venturi, F.; Lester, E.H.; Grant, D.M.; Hussain, T. YAG thermal barrier coatings deposited by suspension and solution precursor thermal spray. Ceram. Int. 2021, 47, 23803–23813. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, E.; Duan, X.; Xie, X.; Ding, D.; Yang, T.; Zhao, Y.; Hou, X. Preparation and characterization of a novel monazite-type high-entropy (La1/7Ce1/7Pr1/7Nd1/7Sm1/7Eu1/7Gd1/7)PO4 for thermal/environmental barrier coatings. J. Alloys Compd. 2023, 952, 169978. [Google Scholar] [CrossRef]
- Han, J.; Wang, Y.; Liu, R.; Wan, F. Theoretical and experimental investigation of Xenotime-type rare earth phosphate REPO4, (RE = Lu, Yb, Er, Y and Sc) for potential environmental barrier coating applications. Sci. Rep. 2020, 10, 13681. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cooper, V.R.; Wang, B.; Xiang, H.; Li, Q.; Gao, Y.; Yang, J.; Zhou, Y.; Liu, B. Discovery of ABO3 perovskites as thermal barrier coatings through high-throughput first principles calculations. Mater. Res. Lett. 2019, 7, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Jana, P.; Jayan, P.S.; Mandal, S.; Biswas, K. Thermal cycling life and failure analysis of rare earth magnesium hexaaluminate based advanced thermal barrier coatings at 1400 °C. Surf. Coat. Technol. 2017, 328, 398–409. [Google Scholar] [CrossRef]
- Yang, F. Electrical and Thermal Properties of Yttria-Stabilised Zirconia (YSZ)-Based Ceramic Materials. Ph.D. Thesis, The Faculty of Engineering and Physical Science, University of Manchester, Manchester, UK, 2011. [Google Scholar]
- Xie, S.; Song, C.; Liu, S.; He, P.; Lapostolle, F.; Klein, D.; Deng, C.; Liu, M.; Liao, H. Dense nanostructured YSZ coating prepared by low-pressure suspension plasma spraying: Atmosphere control and deposition mechanism. Surf. Coat. Technol. 2021, 416, 127175. [Google Scholar] [CrossRef]
- Lima, R.S.; Marple, B.R. Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects. Mater. Sci. Eng. A 2008, 485, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Doleker, K.M.; Ozgurluk, Y.; Karaoglanli, A.C. TGO growth and kinetic study of single and double layered TBC systems. Surf. Coat. Technol. 2021, 415, 127135. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, T.; Sun, B.; Wang, B.; Zhang, X.; Song, L. Isothermal oxidation and TGO growth behavior of NiCoCrAlY-YSZ thermal barrier coatings on a Ni-based superalloy. J. Alloys Compd. 2020, 844, 156093. [Google Scholar] [CrossRef]
- Chen, W.; Archer, R.; Huang, X.; Marple, B.R. TGO Growth and Crack Propagation in a Thermal Barrier Coating. J. Therm. Spray Technol. 2008, 17, 858–864. [Google Scholar] [CrossRef]
- Ding, K.; Zhang, T.; Wang, Z.; Yu, J.; Guo, W.; Yang, Y. Effect of Thermal Growth Oxide Composition and Morphology on Local Stresses in Thermal Barrier Coatings. Materials 2022, 15, 8442. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Li, P.; Wu, Y.W. A study of the diffusion and pre-oxidation treatment on the formation of Al2O3 ceramic scale on NiCrAlY bond-coat during initial oxidation process. Ceram. Int. 2016, 42, 7708–7716. [Google Scholar] [CrossRef]
- Heydari, P. A Review on Functionally Graded-Thermal Barrier Coatings (FG-TBC) Fabrication Methods in Gas Turbines. Am. J. Mech. Mater. Eng. 2022, 6, 18–26. [Google Scholar] [CrossRef]
- Portinha, A.; Teixeira, V.; Carneiro, J.; Martins, J.; Costa, M.F.; Vassen, R.; Stoever, D. Characterization of thermal barrier coatings with a gradient in porosity. Surf. Coat. Technol. 2005, 195, 245–251. [Google Scholar] [CrossRef]
- Teixeira, V. Numerical analysis of the influence of coating porosity and substrate elastic properties on the residual stresses in high temperature graded coatings. Surf. Coat. Technol. 2001, 146–147, 79–84. [Google Scholar] [CrossRef]
- Lima, R.S. Perspectives on Thermal Gradients in Porous ZrO2-7–8 wt.% Y2O3 (YSZ) Thermal Barrier Coatings (TBCs) Manufactured by Air Plasma Spray (APS). Coatings 2020, 10, 812. [Google Scholar] [CrossRef]
- Lima, R.S. Porous APS YSZ TBC Manufactured at High Powder Feed Rate (100 g/min) and Deposition Efficiency (70%): Microstructure, Bond Strength and Thermal Gradients. J. Therm. Spray Tech. 2022, 31, 396–414. [Google Scholar] [CrossRef]
- Gao, P.; Zeng, S.; Jin, C.; Zhang, B.; Chen, B.; Yang, Z.; Guo, Y.; Liang, M.; Li, J.; Wang, W.; et al. Mechanical Properties of Multi-Sized Porous Thermal Barrier Coatings at Micro and Nano Scales after Long-Term Service at High Temperature. Coatings 2022, 12, 165. [Google Scholar] [CrossRef]
- Odhiambo, J.G.; Li, W.; Zhao, Y.; Li, C. Porosity and Its Significance in Plasma-Sprayed Coatings. Coatings 2019, 9, 460. [Google Scholar] [CrossRef] [Green Version]
- Tillmann, W.; Khalil, O.; Abdulgader, M. Porosity Characterization and Its Effect on Thermal Properties of APS-Sprayed Alumina Coatings. Coatings 2019, 9, 601. [Google Scholar] [CrossRef] [Green Version]
- Vandenabeele, C.R.; Lucas, S. Technological challenges and progress in nanomaterials plasma surface modification—A review. Mater. Sci. Eng. Rep. 2020, 139, 100521. [Google Scholar] [CrossRef]
- Vollath, D. Agglomerates of nanoparticles, Beilstein. J. Nanotechnol. 2020, 11, 854–857. [Google Scholar] [CrossRef]
- Huang, J.; Wang, W.; Lu, X.; Liu, S.; Li, C. Influence of Lamellar Interface Morphology on Cracking Resistance of Plasma-Sprayed YSZ Coatings. Coatings 2018, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Moskal, G. The porosity assessment of thermal barrier coatings obtained by APS method. J. Achiev. Mater. Manuf. Eng. 2007, 20, 483–486. [Google Scholar]
- Chen, W.R.; Wu, X.; Marple, B.R.; Lima, R.S.; Patnaik, P.C. Pre-oxidation and TGO growth behaviour of an air-plasma-sprayed thermal barrier coating. Surf. Coat. Technol. 2008, 202, 3787–3796. [Google Scholar] [CrossRef]
- Liu, J.; Sohn, Y.H. Effects of Bond Coat Surface Roughness and Pre-Oxidation on the Thermal Cycling Lifetime of Thermal Barrier Coatings. In 28th International Conference on Advanced Ceramics and Composites B: Ceramic Engineering and Science Proceesings, 25; Lara-Curzio, E., Readley, M.J., Eds.; The American Ceramics Society: Columbus, OH, USA, 2004. [Google Scholar] [CrossRef]
- Jiang, J.; Zou, Z.; Wang, W.; Zhao, X.; Liu, Y.; Cao, Z. Effect of internal oxidation on the interfacial morphology and residual stress in air plasma sprayed thermal barrier coatings. Surf. Coat. Technol. 2018, 334, 215–226. [Google Scholar] [CrossRef]
- Li, G.R.; Yang, G.J.; Li, C.X.; Li, C.J. A comprehensive mechanism for the sintering of plasma-sprayed nanostructured thermal barrier coatings. Ceram. Int. 2017, 43, 9600–9615. [Google Scholar] [CrossRef]
- Yan, J.; Wang, X.; Chen, K.; Lee, K.N. Sintering Modelling of Thermal Barrier Coatings at Elevated Temperatures: A Review of Recent Advances. Coatings 2021, 11, 1214. [Google Scholar] [CrossRef]
- Cernuschi, F.; Marinetti, S. Discrimination Between Over-Thickness and Delamination of Thermal Barrier Coatings by Apparent Thermal Effusivity Thermographic Technique. J. Therm. Spray Technol. 2010, 19, 958–963. [Google Scholar] [CrossRef]
- Chen, W.R.; Wu, X.; Marple, B.R.; Patnaik, P.C. The growth and influence of thermally grown oxide in a thermal barrier coating. Surf. Coat. Technol. 2006, 201, 1074–1079. [Google Scholar] [CrossRef]
- Condruz, M.R.; Matache, G.; Paraschiv, A.; Badea, T.; Badilita, V. High Temperature Oxidation Behavior of Selective Laser Melting Manufactured IN 625. Metals 2020, 10, 668. [Google Scholar] [CrossRef]
- Robie, R.A.; Hemingway, B.S. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures; U.S. Geological Survey Bulletin 2131; United States Government Printing Office: Washington, DC, USA, 1995. [Google Scholar]
- Ogawa, K. High Temperature Oxidation Behavior of Thermal Barrier Coatings. In Gas Turbines; Injeti, G., Ed.; IntechOpen: London, UK, 2015; pp. 103–127. [Google Scholar] [CrossRef]
- Hu, Y.; Cai, C.; Wang, Y.; Yu, H.; Zhou, Y.; Zhou, G. YSZ/NiCrAlY interface oxidation of APS thermal barrier coatings. Corros. Sci. 2018, 142, 22–30. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, C.J.; Li, Y.; Zhang, S.L.; Wang, X.R.; Yang, G.J.; Li, C.X. Thermal Failure of Nanostructured Thermal Barrier Coatings with Cold-Sprayed Nanostructured NiCrAlY Bond Coat. J. Therm. Spray Technol. 2008, 17, 838–845. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, Y.; Liu, K.; Wang, J.W.; Kang, Y.X.; Li, J.R.; Chen, H.Y.; Li, B.Q. Microstructural evolution of plasma sprayed submicron-/nano-zirconia-based thermal barrier coatings. Appl. Surf. Sci. 2016, 363, 101–112. [Google Scholar] [CrossRef]
- Sun, X.M.; Du, L.Z.; Lan, H.; Zhang, H.F.; Liu, R.Y.; Wang, Z.G.; Fang, S.G.; Huang, C.B.; Liu, Z.A.; Zhang, W.G. Study on thermal shock behavior of YSZ abradable sealing coating prepared by mixed solution precursor plasma spraying. Surf. Coat. Technol. 2020, 397, 126045. [Google Scholar] [CrossRef]
- Jamali, H.; Loghman-Estarki, M.R.; Shoja Razavi, R.; Mozafarinia, R.; Edris, H.; Bakhshi, S.R. Comparison of thermal shock behavior of nano-7YSZ, 15YSZ and 5.5SYSZ thermal barrier coatings produced by APS method. Ceramics–Silikáty 2016, 60, 210–219. [Google Scholar] [CrossRef] [Green Version]
Powder | Chemical Composition | O | Al | Cr | Ni | Y | Zr |
---|---|---|---|---|---|---|---|
Amperit 413 NiCrAlY bond coat | wt.% | 8.78 | 10.74 | 24.19 | 59.99 | 4.29 | - |
at. % | 23.59 | 17.1 | 19.17 | 38.06 | 2.07 | - | |
NanoxTM Powder S4007 top coat | wt.% | 14.7 | - | - | - | 8.3 | 77 |
at. % | 49.5 | - | - | - | 5 | 45.5 |
Parameters | Bond Coat | Ceramic Layer | Parameters | Bond Coat | Ceramic Layer |
---|---|---|---|---|---|
Argon, [NLPM] | 45 | 40 | Nozzle diameter, [mm] | 8 | 8 |
Hydrogen, [NLPM] | 6 | 10.6 | Injector angle, [°] | 90 | 90 |
Voltage, [V] | 61 | 70 | Power Feed rate, [g/min] | 50 | 50 |
Current, [A] | 550 | 530 | Spray Speed, [m/s] | 1.25 | 1.25 |
Spray distance, [mm] | 110 | 100 | - | - | - |
Initial State | 400 h | 800 h | |
---|---|---|---|
Area of thermally grown oxides [%] | 0 | 37.11 | 51.84 |
Standard deviation | - | 4.68 | 3.76 |
Porosity of the bond coat [%] | 14.42 | 2.74 | 1.62 |
Standard deviation | 1.08 | 0.52 | 0.48 |
Sample–Area | Chemical Composition (wt.%) | |||
---|---|---|---|---|
O | Ni | Cr | Al | |
#1 | 33.21 | 0.56 | 3.98 | 62.25 |
#2 | 32.98 | 1.26 | 4.22 | 61.54 |
#3 | 29.49 | 4.5 | 50.66 | 15.35 |
Initial State | 400 h | 800 h | |
---|---|---|---|
Projected cone area [µm2] | 52,497 | 38,201 | 37,786 |
Standard deviation | 4651 | 4165 | 2475 |
Porosity of the top coat [%] | 20.08 | 17.84 | 20.43 |
Standard deviation | 0.47 | 0.45 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badea, T.-A.; Condruz, M.-R.; Paraschiv, A. A Study on Long-Term Oxidation and Thermal Shock Performance of Nanostructured YSZ/NiCrAlY TBC with a Less Dense Bond Coat. Materials 2023, 16, 5294. https://doi.org/10.3390/ma16155294
Badea T-A, Condruz M-R, Paraschiv A. A Study on Long-Term Oxidation and Thermal Shock Performance of Nanostructured YSZ/NiCrAlY TBC with a Less Dense Bond Coat. Materials. 2023; 16(15):5294. https://doi.org/10.3390/ma16155294
Chicago/Turabian StyleBadea, Teodor-Adrian, Mihaela-Raluca Condruz, and Alexandru Paraschiv. 2023. "A Study on Long-Term Oxidation and Thermal Shock Performance of Nanostructured YSZ/NiCrAlY TBC with a Less Dense Bond Coat" Materials 16, no. 15: 5294. https://doi.org/10.3390/ma16155294
APA StyleBadea, T. -A., Condruz, M. -R., & Paraschiv, A. (2023). A Study on Long-Term Oxidation and Thermal Shock Performance of Nanostructured YSZ/NiCrAlY TBC with a Less Dense Bond Coat. Materials, 16(15), 5294. https://doi.org/10.3390/ma16155294