Study on the Influence of Erbium and Preheating Process on Mechanical Properties of As-Cast 7055 Aluminum Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Experimental Materials
2.2. Data Acquisition and Analysis Methods
3. Results
3.1. Microstructure and Mechanical Properties
3.2. Phase Component Analysis
3.3. Mechanical Property
4. Conclusions
- (1)
- For the 7055-0.2 wt.%Er aluminum alloy after heat treatment, the grain refinement effect was the most obvious; the grain size was 72 μm.
- (2)
- Al8Cu4Er was formed after the addition of Er to 7055 aluminum alloy. The high-density lamellar eutectic η-Mg(Zn,Al,Cu)2 became thinner. After adding 0.2 wt.%Er, the distribution segregation phenomenon of Mg and Zn was reduced, and the Er element in the 7055-0.2 wt.%Er aluminum alloy after heat treatment was more evenly dispersed than that in the as-cast 7055-0.2 wt.%Er aluminum alloy.
- (3)
- At the solution 410 °C × 1 h and aging 150 °C × 12 h, the mechanical properties of the as-cast 7055-0.2 wt.%Er aluminum alloy after heat treatment increased the fastest, and the hardness reached 168.8 HV, which was 60.4 HV higher than that of the 7055 as-cast aluminum alloy. The maximum elongation of 7055-0.2 wt.%Er as the cast was 10.54%, and the yield strength, tensile strength, and elongation of 7055-0.2 wt.%Er as cast heat treatment were 542.12 MPa, 577.67 MPa, and 8.36%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaibyshev, R.; Sakai, T.; Musin, F.; Nikulin, I.; Miura, H. Superplastic behavior of a 7055 aluminum alloy. Scr. Mater. 2001, 45, 1373. [Google Scholar] [CrossRef]
- Dursun, T.; Soutis, C. Recent developments in advanced aircraft aluminium alloys. Mater. Des. 2014, 56, 862. [Google Scholar] [CrossRef]
- Yuan, L.-Y.; Han, P.-W.; Asghar, G.; Liu, B.-L.; Li, J.-P.; Hu, B.; Fu, P.-H.; Peng, L.-M. Development of High Strength and Toughness Non-Heated Al–Mg–Si Alloys for High-Pressure Die-Casting. Acta Met. Sin. Engl. Lett. 2021, 34, 845. [Google Scholar] [CrossRef]
- Zhang, C.-S.; Zhang, Z.-G.; Liu, M.-F.; Bao, E.-C.; Chen, L.; Zhao, G.-Q. Effects of single- and multi-stage solid solution treatments on microstructure and properties of as-extruded AA7055 helical profile. Trans. Nonferrous Met. Soc. China 2021, 31, 1885. [Google Scholar] [CrossRef]
- Ghiaasiaan, R.; Amirkhiz, B.S.; Shankar, S. Quantitative metallography of precipitating and secondary phases after strengthening treatment of net shaped casting of Al-Zn-Mg-Cu (7000) alloys. Mater. Sci. Eng. A 2017, 698, 206. [Google Scholar] [CrossRef]
- Shin, J.; Kim, T.; Kim, D.; Kim, D.; Kim, K. Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/body applications. J. Alloys Compd. 2017, 698, 577. [Google Scholar] [CrossRef]
- Ma, J.; Welo, T.; Wan, D. The impact of thermo-mechanical processing routes on product quality in integrated aluminium tube bending process. J. Manuf. Process. 2021, 67, 503. [Google Scholar] [CrossRef]
- Zhong, H.; Li, S.; Zhang, Z.; Li, D.; Deng, H.; Chen, J.; Qi, L.; Ojo, O.A. Precipitation behavior, mechanical properties, and corrosion resistance of rare earth–modified Al-Zn-Mg-Cu alloys. Mater. Today Commun. 2022, 31, 103732. [Google Scholar] [CrossRef]
- He, Y.-D.; Zhang, X.-M.; You, J.-H. Effect of minor Sc and Zr on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy. Trans. Nonferrous Met. Soc. China 2006, 16, 1228. [Google Scholar] [CrossRef]
- Fang, H.; Chao, H.; Chen, K. Effect of Zr, Er and Cr additions on microstructures and properties of Al–Zn–Mg–Cu alloys. Mater. Sci. Eng. A 2014, 610, 10. [Google Scholar] [CrossRef]
- Chen, B.A.; Pan, L.; Wang, R.H.; Liu, G.; Cheng, P.M.; Xiao, L.; Sun, J. Effect of solution treatment on precipitation behaviors and age hardening response of Al–Cu alloys with Sc addition. Mater. Sci. Eng. A 2011, 530, 607. [Google Scholar] [CrossRef]
- Chen, B.; Liu, G.; Wang, R.; Zhang, J.; Jiang, L.; Song, J.; Sun, J. Effect of interfacial solute segregation on ductile fracture of Al–Cu–Sc alloys. Acta Mater. 2013, 61, 1676. [Google Scholar] [CrossRef]
- Jiang, L.; Li, J.; Cheng, P.; Liu, G.; Wang, R.; Chen, B.; Zhang, J.; Sun, J.; Yang, M.; Yang, G. Experiment and modeling of ultrafast precipitation in an ultrafine-grained Al–Cu–Sc alloy. Mater. Sci. Eng. A 2014, 607, 596. [Google Scholar] [CrossRef]
- Jiang, L.; Li, J.; Liu, G.; Wang, R.; Chen, B.; Zhang, J.; Sun, J.; Yang, M.; Yang, G.; Yang, J.; et al. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition. Mater. Sci. Eng. A 2015, 637, 139. [Google Scholar] [CrossRef]
- Wen, S.; Xing, Z.; Huang, H.; Li, B.; Wang, W.; Nie, Z. The effect of erbium on the microstructure and mechanical properties of Al–Mg–Mn–Zr alloy. Mater. Sci. Eng. A 2009, 516, 42. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Z.; Li, S.; Yang, J.; Zhang, S.; Bian, X.; Zhang, Y.; Qi, L.; Ojo, O.A. Microstructure, mechanical properties and fatigue crack growth behavior of an Al-Zn-Mg-Cu-Si-Zr-Er alloy fabricated by laser powder bed fusion. Int. J. Fatigue 2023, 172, 107636. [Google Scholar] [CrossRef]
- Schreiber, J.; Omcikus, Z.; Eden, T.; Sharma, M.; Champagne, V.; Patankar, S. Combined effect of hot extrusion and heat treatment on the mechanical behavior of 7055 AA processed via spray metal forming. J. Alloys Compd. 2014, 617, 135. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Pan, Q.; Wang, X.; Xiong, S. The effects of aging treatments on mechanical property and corrosion behavior of spray formed 7055 aluminium alloy. J. Alloys Compd. 2018, 735, 261. [Google Scholar] [CrossRef]
- Song, W.W.; Lin, G.Y.; Li, Q. Influence of conditioning time before artificial aging on the microstructure and proper ties of 7055 aluminium alloy extruded tube. Nonferrous Met. Sci. Eng. 2018, 9, 37. [Google Scholar] [CrossRef]
- Peng, X.; Li, Y.; Liang, X.; Guo, Q.; Xu, G.; Peng, Y.; Yin, Z. Precipitate behavior and mechanical properties of enhanced solution treated Al-Zn-Mg-Cu alloy during non-isothermal ageing. J. Alloys Compd. 2018, 735, 964. [Google Scholar] [CrossRef]
- Azarniya, A.; Taheri, A.K.; Taheri, K.K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective. J. Alloys Compd. 2019, 781, 945. [Google Scholar] [CrossRef]
- Jia, Z.; Xie, Z.; Xiang, K.; Ding, L.; Weng, Y.; Liu, Q. Effect of heat treatment and extrusion processing on the microstructure and mechanical properties of spray formed 7055 alloy. Mater. Charact. 2022, 183, 111619. [Google Scholar] [CrossRef]
- Mondal, C.; Mukhopadhyay, A. On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy. Mater. Sci. Eng. A 2005, 391, 367. [Google Scholar] [CrossRef]
- Wang, F.-F.; Meng, W.; Zhang, H.-W.; Han, Z.-Q. Effects of under-aging treatment on microstructure and mechanical properties of squeeze-cast Al-Zn-Mg-Cu alloy. Trans. Nonferrous Met. Soc. China 2018, 28, 1920. [Google Scholar] [CrossRef]
- Yang, X.; Chen, J.; Liu, J.; Liu, P.; Qin, F.; Cheng, Y.; Wu, C. Spherical constituent particles formed by a multistage solution treatment in Al–Zn–Mg–Cu alloys. Mater. Charact. 2013, 83, 79. [Google Scholar] [CrossRef]
- Liang, J.; Guo, X.; Zheng, Y.; Yao, X.; Li, W.; Zhang, D. Effect of extrusion temperature on microstructural evolution and intergranule bonding of Al–7Si–0.3Mg (wt%) alloy rods produced by extrusion of granule compacts. J. Mater. Process. Technol. 2016, 232, 78. [Google Scholar] [CrossRef]
- Zhang, N.; Lei, C.; Tang, H.; Wang, Q. Double-step aging treatment of high strength Al-5 Mg-3Zn-1Cu(wt%) cast alloy. Mater. Lett. 2022, 322, 132514. [Google Scholar] [CrossRef]
- Emani, S.V.; Benedyk, J.; Nash, P.; Chen, D. Double aging and thermomechanical heat treatment of AA7075 aluminum alloy extrusions. J. Mater. Sci. 2009, 44, 6384. [Google Scholar] [CrossRef]
- Chen, K.; Liu, H.; Zhang, Z.; Li, S.; Todd, R.I. The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments. J. Mater. Process. Technol. 2003, 142, 190. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Han, S.; Wang, Q.; Yu, X. Research on the effect of aging time on the microstructure of 7055 aluminum alloy. Vacuum 2020, 171, 108944. [Google Scholar] [CrossRef]
- Lei, C.; Wang, Q.-D.; Tang, H.-P.; Liu, T.-W.; Li, Z.-Y.; Jiang, H.-Y.; Wang, K.; Ding, W.-J. Effects of Mg content on microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys. Trans. Nonferrous Met. Soc. China 2022, 32, 721. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, W.; Shi, W.; Zhang, B.; Zhou, X.; Wen, S.; Wu, X.; Gao, K.; Rong, L.; Huang, H.; et al. Effect of Er and Zr additions and aging treatment on grain refinement of aluminum alloy fabricated by laser powder bed fusion. J. Alloys Compd. 2022, 912, 165237. [Google Scholar] [CrossRef]
- Ghiaasiaan, R.; Zeng, X.; Shankar, S. Controlled Diffusion Solidification (CDS) of Al-Zn-Mg-Cu (7050): Microstructure, heat treatment and mechanical properties. Mater. Sci. Eng. A 2014, 594, 260. [Google Scholar] [CrossRef]
- Jia, P.; Cao, Y.; Geng, Y.; He, L.; Xiao, N.; Cui, J. Studies on the microstructures and properties in phase transformation of homogenized 7050 alloy. Mater. Sci. Eng. A 2014, 612, 335. [Google Scholar] [CrossRef]
- Huang, R.; Li, M.; Yang, H.; Lu, S.; Zuo, H.; Zheng, S.; Duan, Y.; Yuan, X. Effects of Mg contents on microstructures and second phases of as-cast Al–Zn–Mg–Cu alloys. J. Mater. Res. Technol. 2022, 21, 2105. [Google Scholar] [CrossRef]
Point | Al | Mg | Cu | Zn | Er | Fe | Phase |
---|---|---|---|---|---|---|---|
A | 58.98 | 15.89 | 21.75 | 15.21 | 0 | 0 | α-Al+η-Mg(Zn,Al,Cu)2 |
B | 59.52 | 18.27 | 7.95 | 14.27 | 0 | 0 | α-Al+η-Mg(Zn,Al,Cu)2 |
C | 58.78 | 3.39 | 28.45 | 6.01 | 3.36 | 0 | Al8Cu4Er |
D | 82.45 | 1.33 | 5.25 | 1.84 | 0 | 9.14 | α-Al+η-Mg(Zn,Al,Cu)2 |
E | 58.27 | 1.57 | 27.92 | 6.28 | 4.98 | 0.98 | Al8Cu4Er |
F | 25.90 | 32.61 | 16.78 | 24.70 | 0 | 0 | α-Al+η-Mg(Zn,Al,Cu)2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, F. Study on the Influence of Erbium and Preheating Process on Mechanical Properties of As-Cast 7055 Aluminum Alloy. Materials 2023, 16, 5296. https://doi.org/10.3390/ma16155296
Li J, Li F. Study on the Influence of Erbium and Preheating Process on Mechanical Properties of As-Cast 7055 Aluminum Alloy. Materials. 2023; 16(15):5296. https://doi.org/10.3390/ma16155296
Chicago/Turabian StyleLi, Jingwei, and Faguo Li. 2023. "Study on the Influence of Erbium and Preheating Process on Mechanical Properties of As-Cast 7055 Aluminum Alloy" Materials 16, no. 15: 5296. https://doi.org/10.3390/ma16155296
APA StyleLi, J., & Li, F. (2023). Study on the Influence of Erbium and Preheating Process on Mechanical Properties of As-Cast 7055 Aluminum Alloy. Materials, 16(15), 5296. https://doi.org/10.3390/ma16155296