Time-Dependent Rheological Properties of Cemented Aeolian Sand-Fly Ash Backfill Vary with Particles Size and Plasticizer
Abstract
:1. Introduction
2. Rheological Model
2.1. Rheological Parameters Analysis
2.2. The Rheological Model
2.3. The Properties and Characteristics of Materials
2.3.1. Aeolian Sand
2.3.2. Coal Gangue
2.3.3. Fly Ash
2.3.4. Cement
2.3.5. Chemical Admixture
2.4. Instructions for Rheometer and Vane Spindle
2.5. Specimen Preparation and Experimental Methods
2.5.1. Vane Test to Determine Yield Stress and Viscosity
2.5.2. Differential Thermogravimetric Analysis Test
2.5.3. Zeta Potential Test
2.5.4. Monitoring through Electrical Conductivity
2.5.5. Scanning Electron Microscopy Morphological Analysis
3. Results and Discussion
3.1. Fitting and Analysis of Rheological Parameters
3.2. The Influence of the Amount of Coal Gangue Added on the Rheological Properties of the Slurry
3.3. Correlation between Rheological Parameters and Particles Size
3.4. Time-Dependent Evolution of the Rheological Properties of CAFB with the Ratio of Aeolian Sand/Coal Gangue
3.5. Time-Dependent Evolution of the Rheological Properties of CAFB with Plasticizer
4. Conclusions
- The 3#, 4# and 5# slurry flow index change patterns are the same. The index n, which characterizes the flow property as greater than 1 after 3 min resting, belongs to the swelling body; n is close to 1 after 30 min resting, belongs to Bingham body; n is less than 1 after 60 min resting, belongs to the pseudoplastic body; 1# and 2# slurry in 3–30 min flow index is greater than 1, belongs to the swelling body, After 60 min of resting, the flow pattern of slurry changes n is less than 1, which belongs to the pseudoplastic body.
- With the increase of shear rate and shear time, the viscosity first gradually decreases and then stabilizes, i.e., the rheological properties of the slurry have the characteristic of “shear thinning”; the rheological properties of the slurry process is the comprehensive embodiment of a variety of model composite properties, with the increase of shear rate, the rheological curve of the slurry shows an upward convex shape, showing a pseudoplastic body-Bingham body-Pseudoplastic body (swelling body).
- According to 2# and 3# mixed material, it will be grading configuration aeolian sand, coal gangue, and fly ash filling slurry to ensure long-distance pipeline conveying process slurry flow stability, to ensure smooth pipeline transport.
- Curing time (0–0.5 h) results in higher yield stress of the CAFB. A longer curing time is associated with a greater degree of cement hydration products. Curing time (0.5–1 h) results in lower yield stress of the CAFB. It is because more hydration products are associated with a decrease in the aeolian sand inter-particle frictional resistance of the CAFB.
- The addition of plasticizer to the CAFB significantly reduces the yield stress and viscosity of CAFB. Adding 0.05% of the admixture results in over 65% reduction in yield stress at the time of preparation and after 1 h. A similar reduction was observed in the improvement of viscosity. The marginal reduction upon increasing the admixture to 0.1% is much less, indicating that an optimum percentage is around 0.05.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Q.; Zhang, Q.; Qi, C.; Fourie, A.; Xiao, C. Recycling Phosphogypsum and Construction Demolition Waste for Cemented Paste Backfill and Its Environmental Impact. J. Clean. Prod. 2018, 186, 418–429. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, J.; Klein, B.; Zhou, N.; deWit, B. Experimental Characterization of the Influence of Solid Components on the Rheological and Mechanical Properties of Cemented Paste Backfill. Int. J. Miner. Process. 2017, 168, 116–125. [Google Scholar] [CrossRef]
- Hu, J.; Wang, K. Effect of Coarse Aggregate Characteristics on Concrete Rheology. Constr. Build. Mater. 2011, 25, 1196–1204. [Google Scholar] [CrossRef]
- Kongar-Syuryun, C.H.; Aleksakhin, A.; Khayrutdinov, A.; Tyulyaeva, Y. Research of Rheological Characteristics of the Mixture as a Way to Create a New Backfill Material with Specified Characteristics. Mater. Today Proc. 2021, 38, 2052–2054. [Google Scholar] [CrossRef]
- Adigamov, A.; Rybak, J.; Golovin, K.; Kopylov, A. Mechanization of Stowing Mix Transportation, Increasing Its Efficiency and Quality of the Created Mass. Transp. Res. Procedia 2021, 57, 9–16. [Google Scholar] [CrossRef]
- Rybak, J.; Kongar-Syuryun, C.; Tyulyaeva, Y.; Khayrutdinov, A.M. Creation of Backfill Materials Based on Industrial Waste. Minerals 2021, 11, 739. [Google Scholar] [CrossRef]
- Nikbin, I.M.; Rahimi, R.S.; Allahyari, H.; Fallah, F. Feasibility Study of Waste Poly Ethylene Terephthalate (PET) Particles as Aggregate Replacement for Acid Erosion of Sustainable Structural Normal and Lightweight Concrete. J. Clean. Prod. 2016, 126, 108–117. [Google Scholar] [CrossRef]
- Nasir, O.; Fall, M. Coupling Binder Hydration, Temperature and Compressive Strength Development of Underground Cemented Paste Backfill at Early Ages. Tunn. Undergr. Space Technol. 2010, 25, 9–20. [Google Scholar] [CrossRef]
- Zhou, N.; Ma, H.; Ouyang, S.; Germain, D.; Hou, T. Influential Factors in Transportation and Mechanical Properties of Aeolian Sand-Based Cemented Filling Material. Minerals 2019, 9, 116. [Google Scholar] [CrossRef] [Green Version]
- Ercikdi, B.; Cihangir, F.; Kesimal, A.; Deveci, H.; Alp, İ. Utilization of Industrial Waste Products as Pozzolanic Material in Cemented Paste Backfill of High Sulphide Mill Tailings. J. Hazard. Mater. 2009, 168, 848–856. [Google Scholar] [CrossRef]
- Ercikdi, B.; Külekci, G.; Yılmaz, T. Utilization of Granulated Marble Wastes and Waste Bricks as Mineral Admixture in Cemented Paste Backfill of Sulphide-Rich Tailings. Constr. Build. Mater. 2015, 93, 573–583. [Google Scholar] [CrossRef]
- Saleh, S.; Mahmood, A.H.; Hamed, E.; Zhao, X.-L. The Mechanical, Transport and Chloride Binding Characteristics of Ultra-High-Performance Concrete Utilising Seawater, Sea Sand and SCMs. Constr. Build. Mater. 2023, 372, 130815. [Google Scholar] [CrossRef]
- Yılmaz, T.; Ercikdi, B.; Deveci, H. Utilisation of Construction and Demolition Waste as Cemented Paste Backfill Material for Underground Mine Openings. J. Environ. Manag. 2018, 222, 250–259. [Google Scholar] [CrossRef]
- Şahmaran, M.; Christianto, H.A.; Yaman, İ.Ö. The Effect of Chemical Admixtures and Mineral Additives on the Properties of Self-Compacting Mortars. Cem. Concr. Compos. 2006, 28, 432–440. [Google Scholar] [CrossRef]
- Yin, S.; Wu, A.; Hu, K.; Wang, Y.; Zhang, Y. The Effect of Solid Components on the Rheological and Mechanical Properties of Cemented Paste Backfill. Miner. Eng. 2012, 35, 61–66. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, D.; Liu, X.; Gao, F.; Li, S. Research and Application of Surface Paste Disposal for Clay-Sized Tailings in Tropical Rainy Climate. Int. J. Miner. Process. 2016, 157, 227–235. [Google Scholar] [CrossRef]
- Creber, K.J.; McGuinness, M.; Kermani, M.F.; Hassani, F.P. Investigation into Changes in Pastefill Properties during Pipeline Transport. Int. J. Miner. Process. 2017, 163, 35–44. [Google Scholar] [CrossRef]
- Haiqiang, J.; Fall, M.; Cui, L. Yield Stress of Cemented Paste Backfill in Sub-Zero Environments: Experimental Results. Miner. Eng. 2016, 92, 141–150. [Google Scholar] [CrossRef]
- Mizani, S.; Simms, P. Method-Dependent Variation of Yield Stress in a Thickened Gold Tailings Explained Using a Structure Based Viscosity Model. Miner. Eng. 2016, 98, 40–48. [Google Scholar] [CrossRef]
- Panchal, S.; Deb, D.; Sreenivas, T. Variability in Rheology of Cemented Paste Backfill with Hydration Age, Binder and Superplasticizer Dosages. Adv. Powder Technol. 2018, 29, 2211–2220. [Google Scholar] [CrossRef]
- Simon, D.; Grabinsky, M. Apparent Yield Stress Measurement in Cemented Paste Backfill. Int. J. Min. Reclam. Environ. 2013, 27, 231–256. [Google Scholar] [CrossRef]
- Cui, L.; Fall, M. An Evolutive Elasto-Plastic Model for Cemented Paste Backfill. Comput. Geotech. 2016, 71, 19–29. [Google Scholar] [CrossRef]
- Wu, D.; Deng, T.; Zhao, R. A Coupled THMC Modeling Application of Cemented Coal Gangue-Fly Ash Backfill. Constr. Build. Mater. 2018, 158, 326–336. [Google Scholar] [CrossRef]
- Fall, M.; Célestin, J.C.; Pokharel, M.; Touré, M. A Contribution to Understanding the Effects of Curing Temperature on the Mechanical Properties of Mine Cemented Tailings Backfill. Eng. Geol. 2010, 114, 397–413. [Google Scholar] [CrossRef]
- Duan, G.; Huang, G.; Li, A.; Zhu, Y.; Gong, Y. A Study of Supermolecular Polarization of Comb-like Polycarboxylate Admixtures Synthesized with Polyoxyethylene Macromolecules. J. Mol. Liq. 2012, 174, 129–134. [Google Scholar] [CrossRef]
- Park, C.K.; Noh, M.H.; Park, T.H. Rheological Properties of Cementitious Materials Containing Mineral Admixtures. Cem. Concr. Res. 2005, 35, 842–849. [Google Scholar] [CrossRef]
- Prince, W.; Espagne, M.; Aïtcin, P.-C. Ettringite Formation: A Crucial Step in Cement Superplasticizer Compatibility. Cem. Concr. Res. 2003, 33, 635–641. [Google Scholar] [CrossRef]
- Shi, C.; He, T.; Zhang, G.; Wang, X.; Hu, Y. Effects of Superplasticizers on Carbonation Resistance of Concrete. Constr. Build. Mater. 2016, 108, 48–55. [Google Scholar] [CrossRef]
- Yang, L.; Yilmaz, E.; Li, J.; Liu, H.; Jiang, H. Effect of Superplasticizer Type and Dosage on Fluidity and Strength Behavior of Cemented Tailings Backfill with Different Solid Contents. Constr. Build. Mater. 2018, 187, 290–298. [Google Scholar] [CrossRef]
- Clayton, S.; Grice, T.G.; Boger, D.V. Analysis of the Slump Test for On-Site Yield Stress Measurement of Mineral Suspensions. Int. J. Miner. Process. 2003, 70, 3–21. [Google Scholar] [CrossRef]
- Jiang, H.; Fall, M.; Cui, L. Freezing Behaviour of Cemented Paste Backfill Material in Column Experiments. Constr. Build. Mater. 2017, 147, 837–846. [Google Scholar] [CrossRef]
- Conte, T.; Chaouche, M. Parallel Superposition Rheology of Cement Pastes. Cem. Concr. Compos. 2019, 104, 103393. [Google Scholar] [CrossRef]
- Rubio-Hernández, F.-J. Rheological Behavior of Fresh Cement Pastes. Fluids 2018, 3, 106. [Google Scholar] [CrossRef] [Green Version]
- Ercikdi, B.; Cihangir, F.; Kesimal, A.; Deveci, H.; Alp, İ. Utilization of Water-Reducing Admixtures in Cemented Paste Backfill of Sulphide-Rich Mill Tailings. J. Hazard. Mater. 2010, 179, 940–946. [Google Scholar] [CrossRef]
- Dzuy, N.Q.; Boger, D.V. Direct Yield Stress Measurement with the Vane Method. J. Rheol. 1985, 29, 335–347. [Google Scholar] [CrossRef]
- Yahia, A.; Tanimura, M.; Shimoyama, Y. Rheological Properties of Highly Flowable Mortar Containing Limestone Filler-Effect of Powder Content and W/C Ratio. Cem. Concr. Res. 2005, 35, 532–539. [Google Scholar] [CrossRef]
- Ferrari, L.; Kaufmann, J.; Winnefeld, F.; Plank, J. Impact of Particle Size on Interaction Forces between Ettringite and Dispersing Comb-Polymers in Various Electrolyte Solutions. J. Colloid Interface Sci. 2014, 419, 17–24. [Google Scholar] [CrossRef]
- Zhou, Q.; Glasser, F.P. Thermal Stability and Decomposition Mechanisms of Ettringite at <120°C. Cem. Concr. Res. 2001, 31, 1333–1339. [Google Scholar] [CrossRef]
- Phan, T.H.; Chaouche, M.; Moranville, M. Influence of Organic Admixtures on the Rheological Behaviour of Cement Pastes. Cem. Concr. Res. 2006, 36, 1807–1813. [Google Scholar] [CrossRef]
- Dweck, J.; Buchler, P.M.; Coelho, A.C.V.; Cartledge, F.K. Hydration of a Portland Cement Blended with Calcium Carbonate. Thermochim. Acta 2000, 346, 105–113. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, J.; Sun, H.; Xu, F. Effect of Fly Ash Belite Cement on Hydration Performance of Portland Cement. Crystals 2021, 11, 740. [Google Scholar] [CrossRef]
- Hou, J.; Guo, Z.; Liu, W.; Zhang, Y. Mechanical Properties and Meso-Structure Response of Cemented Gangue-Fly Ash Backfill with Cracks under Seepage- Stress Coupling. Constr. Build. Mater. 2020, 250, 118863. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, J.; Zhou, N. Early-Age Strength of Aeolian Sand-Based Cemented Backfilling Materials: Experimental Results. Arab. J. Sci. Eng. 2018, 43, 1697–1708. [Google Scholar] [CrossRef]
- Elakneswaran, Y.; Nawa, T.; Kurumisawa, K. Zeta Potential Study of Paste Blends with Slag. Cem. Concr. Compos. 2009, 31, 72–76. [Google Scholar] [CrossRef]
- Zeta Potential Measurement | SpringerLink. Available online: https://link.springer.com/protocol/10.1007/978-1-60327-198-1_6 (accessed on 5 July 2023).
- Haruna, S.; Fall, M. Time- and Temperature-Dependent Rheological Properties of Cemented Paste Backfill That Contains Superplasticizer. Powder Technol. 2020, 360, 731–740. [Google Scholar] [CrossRef]
- Wu, D.; Yang, B.; Liu, Y. Pressure Drop in Loop Pipe Flow of Fresh Cemented Coal Gangue–Fly Ash Slurry: Experiment and Simulation. Adv. Powder Technol. 2015, 26, 920–927. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, J.; Ouyang, S.; Deng, X.; Dong, C.; Du, E. Feasibility Study and Performance Optimization of Sand-Based Cemented Paste Backfill Materials. J. Clean. Prod. 2020, 259, 120798. [Google Scholar] [CrossRef]
Chemical Composition | Al2O3 | SiO2 | Na2O | CaO | K2O4 | Fe2O3 | Other | Total |
---|---|---|---|---|---|---|---|---|
Mass percentage (%) | 9.78 | 68.94 | 2.34 | 6.65 | 2.13 | 2.24 | 7.92 | 100 |
Chemical Composition | Al2O3 | SiO2 | P2O5 | K2O | CaO | TiO2 | Fe2O3 | Total |
---|---|---|---|---|---|---|---|---|
Mass percentage (%) | 22.23 | 62.06 | 0.65 | 2.95 | 3.11 | 0.99 | 8.01 | 100 |
Chemical Composition | Al2O3 | SiO2 | S | K2O | CaO | TiO2 | Fe2O3 | Total |
---|---|---|---|---|---|---|---|---|
Mass percentage (%) | 31.89 | 56.89 | 0.66 | 1.39 | 1.84 | 1.95 | 5.38 | 100 |
Chemical Composition | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | Other | Total |
---|---|---|---|---|---|---|---|
Mass percentage (%) | 65.08 | 22.36 | 5.53 | 3.46 | 1.27 | 2.30 | 100 |
CAFB Code | |||||||
---|---|---|---|---|---|---|---|
1# | 46 | 5 | 17.5 | 9 | 0 | 22.5 | 77.5 |
2# | 43 | 8 | 17.5 | 9 | 0 | 22.5 | 77.5 |
3# | 40 | 11 | 17.5 | 9 | 0 | 22.5 | 77.5 |
4# | 37 | 14 | 17.5 | 9 | 0 | 22.5 | 77.5 |
5# | 34 | 17 | 17.5 | 9 | 0 | 22.5 | 77.5 |
6# | 40 | 11 | 17.5 | 9 | 0.05 | 22.5 | 77.5 |
7# | 40 | 11 | 17.5 | 9 | 0.1 | 22.5 | 77.5 |
Time/min | Rheology Index | 1# | 2# | 3# | 4# | 5# |
---|---|---|---|---|---|---|
60 | μ (Pa·s) | 0.052 | 0.038 | 0.115 | 0.017 | 0.0104 |
τ0/Pa | 410.891 | 537.44 | 652.84 | 725.24 | 705.04 | |
n | 0.788 | 1.636 | 1.359 | 1.682 | 0.121 | |
R2 | 0.954 | 0.972 | 0.852 | 0.831 | 0.409 | |
30 | μ (Pa·s) | 1.12 | 0.385 | 0.989 | 1.781 | 0.384 |
τ0/Pa | 611.650 | 543.827 | 600.575 | 779.76 | 919.08 | |
n | 3.048 | 1.452 | 1.024 | 0.997 | 1.085 | |
R2 | 0.956 | 0.989 | 0.964 | 0.953 | 0.626 | |
3 | μ (Pa·s) | 1.166 | 1.763 | 0.148 | 0.563 | 0.041 |
τ0/Pa | 415.16 | 457.91 | 629.84 | 728.86 | 931.98 | |
n | 1.210 | 1.080 | 1.496 | 1.269 | 1.621 | |
R2 | 0.982 | 0.978 | 0.981 | 0.961 | 0.802 |
CAFB Code | D10/μm | D30/μm | D60/μm | D90/μm | D50/μm |
---|---|---|---|---|---|
1# | 53.771 | 80.586 | 179.465 | 361.146 | 138.018 |
2# | 51.263 | 78.586 | 207.453 | 449.321 | 151.538 |
3# | 48.755 | 76.587 | 235.442 | 533.496 | 165.059 |
4# | 46.247 | 74.587 | 263.43 | 617.671 | 178.579 |
5# | 43.74 | 72.594 | 291.507 | 702.089 | 192.149 |
I 6# | 48.755 | 76.587 | 235.442 | 533.496 | 165.059 |
7# | 48.755 | 76.587 | 235.442 | 533.496 | 165.059 |
Correlation Model | a | b | ||
---|---|---|---|---|
−5.971 | 0.138 | 0.753 | 0.423 | |
−12.486 | 0.173 | 0.753 | 0.423 | |
4.945 | −0.026 | 0.753 | 0.423 | |
3.637 | −0.012 | 0.753 | 0.423 | |
2.890 | −0.004 | 0.750 | 0.417 | |
3169.028 | −52.021 | 0.981 | 0.951 | |
5632.278 | −65.278 | 0.981 | 0.951 | |
−959.012 | 9.643 | 0.981 | 0.951 | |
−464.177 | 4.659 | 0.981 | 0.951 | |
−183.410 | 1.532 | 0.980 | 0.947 |
Correlation Model | a | b | ||
---|---|---|---|---|
0.784 | 0.003 | 0.021 | 0.333 | |
0.647 | 0.004 | 0.020 | 0.333 | |
1.027 | −0.0005 | 0.021 | 0.333 | |
0.997 | −0.0002 | 0.021 | 0.333 | |
0.985 | −0.0001 | 0.023 | 0.333 | |
2344.996 | −33.924 | 0.868 | 0.672 | |
3951.053 | −42.566 | 0.868 | 0.671 | |
−347.240 | 6.290 | 0.868 | 0.672 | |
−24.474 | 3.038 | 0.868 | 0.672 | |
160.503 | 0.996 | 0.864 | 0.662 |
Correlation Model | a | b | ||
---|---|---|---|---|
−0.156 | 0.004 | 0.395 | 0.126 | |
−0.353 | 0.005 | 0.395 | 0.126 | |
0.174 | −0.0007 | 0.395 | 0.126 | |
0.134 | −0.0004 | 0.395 | 0.126 | |
0.111 | −0.0001 | 0.392 | 0.128 | |
2115.179 | −30.948 | 0.934 | 0.831 | |
3581.505 | −38.847 | 0.935 | 0.831 | |
−340.291 | 5.734 | 0.934 | 0.830 | |
−46.059 | 2.770 | 0.934 | 0.830 | |
118.957 | 0.915 | 0.936 | 0.836 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Zheng, Z.; Jin, J.; Wang, X. Time-Dependent Rheological Properties of Cemented Aeolian Sand-Fly Ash Backfill Vary with Particles Size and Plasticizer. Materials 2023, 16, 5295. https://doi.org/10.3390/ma16155295
Yang B, Zheng Z, Jin J, Wang X. Time-Dependent Rheological Properties of Cemented Aeolian Sand-Fly Ash Backfill Vary with Particles Size and Plasticizer. Materials. 2023; 16(15):5295. https://doi.org/10.3390/ma16155295
Chicago/Turabian StyleYang, Baogui, Zhijun Zheng, Junyu Jin, and Xiaolong Wang. 2023. "Time-Dependent Rheological Properties of Cemented Aeolian Sand-Fly Ash Backfill Vary with Particles Size and Plasticizer" Materials 16, no. 15: 5295. https://doi.org/10.3390/ma16155295
APA StyleYang, B., Zheng, Z., Jin, J., & Wang, X. (2023). Time-Dependent Rheological Properties of Cemented Aeolian Sand-Fly Ash Backfill Vary with Particles Size and Plasticizer. Materials, 16(15), 5295. https://doi.org/10.3390/ma16155295