Electrochemical Behavior of Al/Mg Alloys Immobilized in a Magnesium Potassium Phosphate Cement-Based Mortar
Abstract
:1. Introduction
- -
- varying the Mg content in the alloy (from 2.0 to 4.5 wt%) and comparing the results with those achieved for pure Al and Mg metals,
- -
- investigating the corrosion of Al–Mg alloys at later ages since the reaction of the MKP cement continues to progress after 14 d,
- -
- using impedance spectroscopy at the open circuit potential in order to avoid any perturbation of the metal–matrix interface due to polarization effects,
- -
- validating the approach consisting of assessing the dihydrogen production from the corrosion current by comparing it to direct H2 measurements using gas chromatography.
2. Experimental
2.1. Aluminum-Magnesium Alloys
2.2. MKP Mortar
2.3. Gas Analysis
2.4. Potentiometric and Electrochemical Impedance Spectroscopy Measurements
3. Results
3.1. Dihydrogen Release Measured Using Gas Chromatography
- (i)
- water depletion via the cement reaction and the corrosion processes, and
- (ii)
- precipitation of a protective layer of a phosphate phase such as K-struvite (MgKPO4·6H2O).
3.2. Potentiometric and Electrochemical Impedance Spectroscopy Measurements on Al, Mg, and Al/Mg Alloys in MKP Mortar
3.2.1. Evolution of the Open Circuit Potential with Ongoing Cement Reaction
3.2.2. Qualitative Evolution of Impedance Spectra
3.2.3. Quantitative Analysis of Electrochemical Impedance Spectra
- Corrosion mechanism and equivalent electrical circuit
- -
- the “insulator” conductive path (ICP) through the hydrates is modeled using a pure capacitance Cm,
- -
- the continuous conductive path (CCP) through the open porosity and the electrolyte is modeled using a pure resistance Re,
- -
- discontinuous conductive paths (DCP) through the closed porosity of the matrix are modeled using a resistance and a capacitance in series.
- Evolution of the mortar contribution to the impedance
- (i)
- progressive desaturation of the pore network due to water consumption,
- (ii)
- decrease in the mobility of dissolved species in the residual pore solution due to depercolation of the pore network, and
- (iii)
- decrease in their concentrations due to progressive equilibration.
- Calculation of the corrosion current
- Dihydrogen production
4. Discussion
4.1. Comparison of GC-Measured and EIS-Calculated H2 Releases
- -
- A fraction of the dihydrogen produced by corrosion may be confined to the porosity of the mortar. Consequently, the H2 released in the headspace of the reactor (measured by GC) would only represent a fraction of the H2 produced by corrosion (assessed by EIS). With time, this trapped gas may diffuse through the mortar, explaining the better agreement between GC and EIS results. Note that the diffusion coefficient of dihydrogen through cementitious materials strongly depends on the water saturation degree of their pore network. Frizon et al. [48] have shown, for instance, that the diffusion coefficient of H2 through a Portland cement paste varies from close to 100% water saturation to for water saturation degrees below 60%. In this work, the water saturation degree of the MKP mortar progressively decreases with time, thus making gas diffusion easier as the cement reaction progresses. Note that the desiccation of the sample due to water evaporation in the headspace of the reactor is negligible in both EIS and GC experiments: it would represent a maximum of 23 µL of free water (estimated from Clausius–Clapeyron equation), whereas several milliliters of free water are available in the porosity of the matrix even after a long period of curing (measured by TGA analysis not presented here).
- -
- EIS is a punctual method. The corrosion current is measured at given times and is then integrated to calculate the cumulative H2 release, whereas GC directly measures the cumulated gas produced by corrosion. Given the concave-up nature of the corrosion current curve, the trapezoidal rule used for integration very slightly overestimates the value of the integral and, thus, the dihydrogen production derived from EIS.
4.2. Origin of the Decrease in the H2 Release with Time
5. Conclusions
- -
- Despite the strong corrosion of Mg metal at earlier ages in MKP mortar, the electrochemical behavior of Al/Mg alloys in this matrix remains close to that of pure Al. Up to 4.5 wt%, the Mg content in Al/Mg alloys has no significant influence on the cumulative volume of dihydrogen released over 1 y.
- -
- The corrosion rate of Al and Al/Mg alloys containing up to 4.5% Mg is reduced by ~3 orders of magnitude in hardened MKP mortar, as compared to Portland-cement-based materials. It decreases as the cement reaction progresses. The decrease is rapid during the first month and then slows down, but small evolutions are still noticed after 1 y.
- -
- On the contrary, pure magnesium is highly corroded in the MKP matrix. Its OCP always remains below the reduction potential of water. Nevertheless, the H2 release tends to slow down with time. Consumption of water via the cement reaction and precipitation of a passivation layer, possibly K-struvite, likely limit the corrosion process.
- -
- The H2 production over a 1 year period, calculated from the corrosion current measured using EIS, is in rather good agreement with direct gas measurements using GC, which supports the postulated corrosion mechanism and the fitting method of EIS data.
- -
- Regarding Al/Mg alloys, the gas release measured experimentally is, however, significantly smaller than that calculated from the corrosion current, assuming oxidation of Al and Mg via water. This suggests the occurrence of another oxidizing process without any formation of H2, which is not simply related to the magnesium content in the alloy. Further study would be required to investigate the influence of impurities and the microstructure of Al/Mg alloys on their corrosion mechanism.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- -
- , experimental error on the metallic surface area,
- -
- , experimental error on the pressure in the reactor,
- -
- , experimental error on the H2 fraction in the headspace,
- -
- , experimental error on the volume of the headspace in the reactor,
- -
- , experimental error on the temperature,
- -
- , experimental error on the volume of the GC analysis line.
Appendix B
Appendix C
Curing Time | OCP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Days | V/NHE | F | Ω | Ω | F | Ω | F | Ω | % | ||
1 | −0.80 | 1.4 × 10−10 | 54 | 277 | 1.1 × 10−6 | 367 | 3.2 × 10−8 | 6.2 × 10−5 | 0.90 | 1.0 × 104 | 5% |
2 | −0.67 | 2.3 × 10−10 | 129 | 562 | 1.0 × 10−6 | 873 | 3.0 × 10−8 | 5.0 × 10−5 | 0.91 | 4.1 × 104 | 2% |
3 | −0.53 | 2.4 × 10−10 | 159 | 621 | 1.1 × 10−6 | 969 | 3.1 × 10−8 | 4.6 × 10−5 | 0.89 | 1.3 × 105 | 4% |
6 | −0.62 | 2.4 × 10−10 | 197 | 731 | 1.2 × 10−6 | 1180 | 3.2 × 10−8 | 4.5 × 10−5 | 0.89 | 3.4 × 105 | 3% |
7 | −0.61 | 2.4 × 10−10 | 196 | 704 | 1.3 × 10−6 | 1150 | 3.3 × 10−8 | 4.6 × 10−5 | 0.88 | 3.2 × 105 | 3% |
14 | −0.60 | 2.4 × 10−10 | 282 | 942 | 1.4 × 10−6 | 1560 | 3.5 × 10−8 | 4.2 × 10−5 | 0.88 | 1.4 × 106 | 7% |
21 | −0.59 | 2.5 × 10−10 | 313 | 1060 | 1.4 × 10−6 | 1710 | 4.0 × 10−8 | 4.1 × 10−5 | 0.87 | 3.0 × 106 | 17% |
28 | −0.57 | 2.4 × 10−10 | 318 | 1060 | 1.5 × 10−6 | 1720 | 4.1 × 10−8 | 4.1 × 10−5 | 0.87 | 2.0 × 106 | 15% |
59 | −0.49 | 2.4 × 10−10 | 389 | 1270 | 1.5 × 10−6 | 2070 | 4.0 × 10−8 | 3.9 × 10−5 | 0.86 | 5.0 × 106 | 10% |
91 | −0.46 | 2.3 × 10−10 | 426 | 1440 | 1.5 × 10−6 | 2300 | 4.1 × 10−8 | 3.8 × 10−5 | 0.86 | 5.0 × 106 | 20% |
118 | −0.39 | 2.3 × 10−10 | 485 | 1720 | 1.3 × 10−6 | 2740 | 3.7 × 10−8 | 3.7 × 10−5 | 0.85 | 5.0 × 106 | 20% |
148 | −0.41 | 2.3 × 10−10 | 431 | 1600 | 1.3 × 10−6 | 2540 | 3.5 × 10−8 | 3.8 × 10−5 | 0.85 | 1.3 × 106 | 8% |
181 | −0.37 | 2.2 × 10−10 | 507 | 2060 | 1.0 × 10−6 | 3260 | 2.9 × 10−8 | 3.5 × 10−5 | 0.84 | 3.0 × 106 | 33% |
211 | −0.32 | 2.2 × 10−10 | 572 | 2430 | 9.8 × 10−7 | 3800 | 2.8 × 10−8 | 3.4 × 10−5 | 0.83 | 1.0 × 107 | 20% |
244 | −0.35 | 2.0 × 10−10 | 555 | 2420 | 9.0 × 10−7 | 3710 | 2.5 × 10−8 | 3.4 × 10−5 | 0.84 | 1.0 × 107 | 30% |
279 | −0.21 | 1.9 × 10−10 | 753 | 2740 | 1.2 × 10−6 | 4080 | 4.1 × 10−8 | 2.9 × 10−5 | 0.84 | 4.0 × 107 | 25% |
308 | −0.30 | 1.9 × 10−10 | 787 | 3130 | 1.2 × 10−6 | 4660 | 4.1 × 10−8 | 2.7 × 10−5 | 0.85 | 4.0 × 107 | 25% |
338 | −0.29 | 1.8 × 10−10 | 831 | 3430 | 1.1 × 10−6 | 5040 | 3.8 × 10−8 | 2.7 × 10−5 | 0.85 | 4.0 × 107 | 25% |
Curing Time | OCP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Days | V/NHE | F | Ω | Ω | F | Ω | F | Ω | % | ||
1 | −0.70 | 1.5 × 10−10 | 35 | 192 | 1.8 × 10−6 | 259 | 5.9 × 10−8 | 6.3 × 10−5 | 0.89 | 8.1 × 103 | 2% |
2 | −0.52 | 2.9 × 10−10 | 85 | 680 | 5.2 × 10−7 | 950 | 2.0 × 10−8 | 5.0 × 10−5 | 0.90 | 2.5 × 104 | 4% |
3 | −0.31 | 3.0 × 10−10 | 101 | 762 | 5.0 × 10−7 | 1080 | 1.9 × 10−8 | 4.5 × 10−5 | 0.88 | 5.3 × 104 | 2% |
6 | −0.22 | 3.1 × 10−10 | 123 | 868 | 5.7 × 10−7 | 1300 | 2.1 × 10−8 | 4.0 × 10−5 | 0.88 | 1.3 × 105 | 2% |
7 | −0.24 | 3.0 × 10−10 | 120 | 800 | 6.5 × 10−7 | 1240 | 2.2 × 10−8 | 3.9 × 10−5 | 0.88 | 1.3 × 105 | 4% |
14 | −0.16 | 3.1 × 10−10 | 170 | 1100 | 7.0 × 10−7 | 1700 | 2.2 × 10−8 | 3.5 × 10−5 | 0.88 | 5.7 × 105 | 4% |
21 | −0.16 | 3.1 × 10−10 | 179 | 1050 | 1.0 × 10−6 | 1600 | 3.0 × 10−8 | 3.4 × 10−5 | 0.88 | 7.0 × 105 | 7% |
28 | −0.16 | 3.1 × 10−10 | 190 | 1210 | 7.5 × 10−7 | 1910 | 2.2 × 10−8 | 3.2 × 10−5 | 0.88 | 1.1 × 106 | 9% |
59 | −0.12 | 3.0 × 10−10 | 240 | 1520 | 7.8 × 10−7 | 2330 | 2.3 × 10−8 | 3.0 × 10−5 | 0.88 | 2.7 × 106 | 11% |
91 | −0.10 | 3.0 × 10−10 | 267 | 1780 | 8.0 × 10−7 | 2580 | 2.8 × 10−8 | 2.8 × 10−5 | 0.88 | 3.0 × 106 | 17% |
118 | −0.03 | 2.9 × 10−10 | 333 | 2180 | 9.0 × 10−7 | 3250 | 3.1 × 10−8 | 2.6 × 10−5 | 0.88 | 5.0 × 107 | 40% |
148 | −0.06 | 2.9 × 10−10 | 299 | 2090 | 7.8 × 10−7 | 2950 | 2.9 × 10−8 | 2.7 × 10−5 | 0.88 | 5.0 × 106 | 40% |
181 | 0.04 | 2.8 × 10−10 | 381 | 3870 | 6.9 × 10−7 | 4080 | 2.7 × 10−8 | 2.5 × 10−5 | 0.88 | 8.0 × 106 | 25% |
211 | 0.12 | 2.7 × 10−10 | 474 | 3440 | 7.7 × 10−7 | 5030 | 2.8 × 10−8 | 2.3 × 10−5 | 0.88 | 2.0 × 107 | 25% |
244 | 0.06 | 2.8 × 10−10 | 476 | 3870 | 4.0 × 10−7 | 5390 | 1.4 × 10−8 | 2.2 × 10−5 | 0.89 | 1.1 × 107 | 27% |
279 | 0.16 | 2.9 × 10−10 | 663 | 5090 | 6.3 × 10−7 | 7020 | 3.1 × 10−8 | 2.1 × 10−5 | 0.89 | 2.0 × 107 | 25% |
308 | 0.16 | 2.8 × 10−10 | 750 | 5680 | 6.7 × 10−7 | 7830 | 3.2 × 10−8 | 2.1 × 10−5 | 0.89 | 3.0 × 107 | 33% |
338 | 0.18 | 2.7 × 10−10 | 905 | 7190 | 5.9 × 10−7 | 10,000 | 2.9 × 10−8 | 2.0 × 10−5 | 0.89 | 5.0 × 107 | 40% |
Curing Time | OCP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Days | V/NHE | F | Ω | Ω | F | Ω | F | Ω | % | ||
1 | −0.73 | 1.4 × 10−10 | 52 | 276 | 1.3 × 10−6 | 402 | 4.1 × 10−8 | 5.3 × 10−5 | 0.92 | 6.0 × 103 | 2% |
2 | −0.65 | 2.1 × 10−10 | 110 | 825 | 6.6 × 10−7 | 1280 | 1.5 × 10−8 | 4.5 × 10−5 | 0.92 | 2.5 × 104 | 2% |
3 | −0.58 | 2.1 × 10−10 | 126 | 1100 | 2.8 × 10−7 | 1890 | 6.5 × 10−9 | 4.1 × 10−5 | 0.91 | 5.3 × 104 | 2% |
6 | −0.49 | 2.1 × 10−10 | 155 | 1300 | 3.5 × 10−7 | 2060 | 8.9 × 10−9 | 3.8 × 10−5 | 0.90 | 9.7 × 104 | 2% |
7 | −0.53 | 2.1 × 10−10 | 150 | 1260 | 3.6 × 10−7 | 1950 | 9.5 × 10−9 | 3.7 × 10−5 | 0.90 | 8.5 × 104 | 2% |
14 | −0.52 | 2.2 × 10−10 | 217 | 1920 | 3.2 × 10−7 | 3070 | 7.5 × 10−9 | 3.5 × 10−5 | 0.89 | 2.7 × 105 | 4% |
21 | −0.54 | 2.1 × 10−10 | 228 | 1980 | 3.3 × 10−7 | 3240 | 8.0 × 10−9 | 3.5 × 10−5 | 0.89 | 2.7 × 105 | 7% |
28 | −0.55 | 2.1 × 10−10 | 248 | 2210 | 3.0 × 10−7 | 3650 | 7.1 × 10−9 | 3.4 × 10−5 | 0.89 | 3.1 × 105 | 5% |
59 | −0.35 | 2.0 × 10−10 | 317 | 3330 | 2.3 × 10−7 | 5150 | 6.3 × 10−9 | 3.4 × 10−5 | 0.86 | 4.1 × 105 | 2% |
91 | −0.45 | 1.9 × 10−10 | 376 | 3500 | 3.0 × 10−7 | 5740 | 7.3 × 10−9 | 2.8 × 10−5 | 0.89 | 6.1 × 105 | 3% |
118 | −0.34 | 1.9 × 10−10 | 466 | 4430 | 2.8 × 10−7 | 7310 | 7.5 × 10−9 | 2.6 × 10−5 | 0.88 | 8.0 × 105 | 6% |
148 | −0.35 | 1.8 × 10−10 | 440 | 4360 | 2.5 × 10−7 | 6780 | 7.8 × 10−9 | 2.7 × 10−5 | 0.89 | 7.0 × 105 | 7% |
181 | −0.18 | 1.8 × 10−10 | 585 | 5620 | 2.6 × 10−7 | 9220 | 7.5 × 10−9 | 2.2 × 10−5 | 0.90 | 1.4 × 106 | 7% |
211 | −0.06 | 1.7 × 10−10 | 747 | 6990 | 2.7 × 10−7 | 11,800 | 8.5 × 10−9 | 1.9 × 10−5 | 0.91 | 2.6 × 106 | 12% |
244 | −0.10 | 1.7 × 10−10 | 798 | 7840 | 2.5 × 10−7 | 10,500 | 1.1 × 10−8 | 1.9 × 10−5 | 0.91 | 2.8 × 106 | 11% |
279 | −0.02 | 1.7 × 10−10 | 1090 | 10,,200 | 2.8 × 10−7 | 14,600 | 1.2 × 10−8 | 1.7 × 10−5 | 0.91 | 5.0 × 106 | 20% |
308 | −0.01 | 1.6 × 10−10 | 1180 | 11,200 | 2.8 × 10−7 | 15,800 | 1.2 × 10−8 | 1.7 × 10−5 | 0.91 | 6.0 × 106 | 17% |
338 | 0.01 | 1.6 × 10−10 | 1410 | 14,300 | 2.5 × 10−7 | 20,600 | 1.2 × 10−8 | 1.7 × 10−5 | 0.91 | 9.0 × 106 | 22% |
Curing Time | OCP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Days | V/NHE | F | Ω | Ω | F | Ω | F | Ω | % | ||
1 | −0.72 | 2.3 × 10−10 | 55 | 427 | 7.0 × 10−7 | 551 | 2.5 × 10−8 | 5.9 × 10−5 | 0.91 | 5.7 × 103 | 2% |
2 | −0.49 | 2.5 × 10−10 | 100 | 673 | 7.8 × 10−7 | 1080 | 1.9 × 10−8 | 4.7 × 10−5 | 0.90 | 3.0 × 104 | 3% |
3 | −0.44 | 2.6 × 10−10 | 113 | 921 | 4.1 × 10−7 | 1450 | 1.4 × 10−8 | 4.2 × 10−5 | 0.89 | 5.0 × 104 | 2% |
6 | −0.41 | 2.6 × 10−10 | 140 | 1070 | 4.8 × 10−7 | 1720 | 1.7 × 10−8 | 3.8 × 10−5 | 0.89 | 9.8 × 104 | 2% |
7 | −0.44 | 2.6 × 10−10 | 136 | 1030 | 5.2 × 10−7 | 1600 | 2.0 × 10−8 | 3.8 × 10−5 | 0.89 | 1.0 × 105 | 2% |
14 | −0.31 | 2.6 × 10−10 | 195 | 1390 | 5.0 × 10−7 | 2310 | 1.4 × 10−8 | 3.4 × 10−5 | 0.88 | 2.5 × 105 | 2% |
21 | −0.45 | 2.6 × 10−10 | 206 | 1440 | 5.0 × 10−7 | 2530 | 1.3 × 10−8 | 3.3 × 10−5 | 0.89 | 3.6 × 105 | 3% |
28 | −0.46 | 2.5 × 10−10 | 225 | 1560 | 5.2 × 10−7 | 2690 | 1.4 × 10−8 | 3.2 × 10−5 | 0.89 | 4.6 × 105 | 4% |
59 | −0.39 | 2.5 × 10−10 | 280 | 1930 | 5.1 × 10−7 | 3230 | 1.3 × 10−8 | 3.1 × 10−5 | 0.88 | 6.8 × 105 | 4% |
91 | −0.33 | 2.5 × 10−10 | 309 | 2170 | 5.0 × 10−7 | 3500 | 1.6 × 10−8 | 2.9 × 10−5 | 0.88 | 9.0 × 105 | 6% |
118 | −0.26 | 2.4 × 10−10 | 373 | 2620 | 4.7 × 10−7 | 4320 | 1.5 × 10−8 | 2.6 × 10−5 | 0.88 | 1.3 × 106 | 8% |
148 | −0.27 | 2.4 × 10−10 | 344 | 2360 | 5.1 × 10−7 | 3850 | 1.6 × 10−8 | 2.7 × 10−5 | 0.89 | 1.1 × 106 | 5% |
181 | −0.15 | 2.3 × 10−10 | 424 | 2850 | 4.7 × 10−7 | 4740 | 1.4 × 10−8 | 2.4 × 10−5 | 0.89 | 1.4 × 106 | 7% |
211 | −0.05 | 2.3 × 10−10 | 514 | 3290 | 5.1 × 10−7 | 5520 | 1.7 × 10−8 | 2.1 × 10−5 | 0.90 | 1.9 × 106 | 11% |
244 | −0.07 | 2.4 × 10−10 | 516 | 3250 | 4.3 × 10−7 | 5260 | 1.1 × 10−8 | 2.0 × 10−5 | 0.90 | 1.8 × 106 | 11% |
279 | −0.01 | 2.3 × 10−10 | 628 | 3910 | 5.4 × 10−7 | 6010 | 2.2 × 10−8 | 1.9 × 10−5 | 0.91 | 2.3 × 106 | 9% |
308 | 0.08 | 2.3 × 10−10 | 850 | 5040 | 5.7 × 10−7 | 8160 | 2.2 × 10−8 | 1.8 × 10−5 | 0.91 | 4.0 × 106 | 13% |
338 | 0.00 | 2.3 × 10−10 | 787 | 4950 | 5.0 × 10−7 | 7780 | 2.0 × 10−8 | 1.8 × 10−5 | 0.91 | 3.0 × 106 | 17% |
Curing Time | OCP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Days | V/NHE | F | Ω | Ω | F | Ω | F | Ω | % | ||
1 | −0.69 | 2.6 × 10−10 | 51 | 422 | 7.7 × 10−7 | 488 | 3.4 × 10−8 | 4.5 × 10−5 | 0.91 | 8.0 × 103 | 3% |
2 | −0.52 | 3.0 × 10−10 | 88 | 497 | 1.2 × 10−6 | 737 | 4.0 × 10−8 | 3.6 × 10−5 | 0.91 | 3.6 × 104 | 3% |
3 | −0.46 | 3.0 × 10−10 | 101 | 620 | 8.6 × 10−7 | 901 | 3.0 × 10−8 | 3.3 × 10−5 | 0.90 | 6.4 × 104 | 3% |
6 | −0.42 | 3.1 × 10−10 | 120 | 816 | 5.2 × 10−7 | 1270 | 2.1 × 10−8 | 3.0 × 10−5 | 0.90 | 1.5 × 105 | 3% |
7 | −0.45 | 3.1 × 10−10 | 116 | 770 | 5.7 × 10−7 | 1230 | 2.3 × 10−8 | 3.0 × 10−5 | 0.90 | 1.5 × 105 | 2% |
14 | −0.44 | 3.2 × 10−10 | 169 | 1060 | 5.5 × 10−7 | 1680 | 2.5 × 10−8 | 2.6 × 10−5 | 0.90 | 5.2 × 105 | 2% |
21 | −0.47 | 3.2 × 10−10 | 200 | 1200 | 5.5 × 10−7 | 1810 | 1.4 × 10−8 | 2.5 × 10−5 | 0.90 | 8.5 × 105 | 2% |
28 | −0.52 | 3.2 × 10−10 | 200 | 1270 | 7.0 × 10−7 | 2040 | 2.5 × 10−8 | 2.6 × 10−5 | 0.90 | 6.2 × 105 | 3% |
59 | −0.47 | 3.1 × 10−10 | 256 | 1640 | 7.3 × 10−7 | 2590 | 2.6 × 10−8 | 2.5 × 10−5 | 0.90 | 8.0 × 105 | 6% |
91 | −0.41 | 3.1 × 10−10 | 292 | 1920 | 7.7 × 10−7 | 2950 | 3.0 × 10−8 | 2.4 × 10−5 | 0.89 | 8.3 × 105 | 6% |
118 | −0.28 | 3.1 × 10−10 | 362 | 2600 | 5.6 × 10−7 | 4060 | 2.3 × 10−8 | 2.2 × 10−5 | 0.89 | 1.3 × 106 | 8% |
148 | −0.31 | 3.0 × 10−10 | 364 | 2300 | 7.8 × 10−7 | 3670 | 3.2 × 10−8 | 2.2 × 10−5 | 0.90 | 1.2 × 106 | 8% |
181 | −0.13 | 3.0 × 10−10 | 519 | 2810 | 8.6 × 10−7 | 4990 | 3.3 × 10−8 | 1.8 × 10−5 | 0.90 | 1.9 × 106 | 11% |
211 | −0.04 | 2.9 × 10−10 | 678 | 3450 | 9.4 × 10−7 | 6310 | 3.8 × 10−8 | 1.6 × 10−5 | 0.91 | 3.7 × 106 | 11% |
244 | −0.05 | 3.0 × 10−10 | 782 | 3400 | 1.2 × 10−6 | 6430 | 4.3 × 10−8 | 1.6 × 10−5 | 0.91 | 4.0 × 106 | 13% |
279 | 0.07 | 3.0 × 10−10 | 1150 | 4170 | 1.5 × 10−6 | 8850 | 5.6 × 10−8 | 1.5 × 10−5 | 0.91 | 1.3 × 107 | 15% |
308 | 0.09 | 2.8 × 10−10 | 1620 | 4970 | 2.0 × 10−6 | 11,300 | 7.2 × 10−8 | 1.4 × 10−5 | 0.91 | 4.0 × 107 | 25% |
338 | 0.02 | 2.8 × 10−10 | 1320 | 5260 | 1.3 × 10−6 | 10,900 | 4.8 × 10−8 | 1.4 × 10−5 | 0.91 | 1.5 × 107 | 33% |
References
- Parisot, J.-F. (Ed.) Nuclear waste conditioning. In DEN Monographs; Editions Le Moniteur: Paris, France, 2009. [Google Scholar]
- ANSI H35.1; American National Standard Alloy and Temper Designation Systems for Aluminum 2017. The Aluminum Association: Arlington, VA, USA, 2017.
- Vargel, C. Corrosion of Aluminium, 1st ed.; Elsevier: Amsterdam, The Netherlands; Boston, MA, USA, 2004. [Google Scholar]
- Sukiman, N.L.; Zhou, X.; Birbilis, N.; Hughes, A.E.; Mol, J.M.C.; Garcia, S.J.; Zhou, X.; Thompson, G.E. Durability and Corrosion of Aluminium and Its Alloys: Overview, Property Space, Techniques and Developments. Alum. Alloys-New Trends Fabr. Appl. 2012, 5, 47–97. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.R. Aluminum and aluminum alloys. In ASM Specialty Handbook; ASM international: Almere, The Netherlands, 1993; pp. 3–18. [Google Scholar]
- Atkins, M.; Glasser, F.P. Application of portland cement-based materials to radioactive waste immobilization. Waste Manag. 1992, 12, 105–131. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Lee, W.E. An introduction to nuclear waste immobilization. In Elsevier Insights, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Cau Dit Coumes, C.; Lambertin, D.; Lahalle, H.; Antonucci, P.; Cannes, C.; Delpech, S. Selection of a mineral binder with potentialities for the stabilization/solidification of aluminum metal. J. Nucl. Mater. 2014, 453, 31–40. [Google Scholar] [CrossRef]
- Mendibide, C.; Dusquesnes, V.; Deydier, V.; Bourbon, X.; Crusset, D. Corrosion behavior of aluminum alloy 5754 in cement-based matrix-simulating nuclear waste disposal conditions. Mater. Corros. 2021, 72, 383–395. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas d’équilibres électrochimiques. J. Electrochem. Soc. 1964, 111, 1. [Google Scholar] [CrossRef]
- Zhou, Q.; Milestone, N.B.; Hayes, M. An alternative to Portland Cement for waste encapsulation—The calcium sulfoaluminate cement system. J. Hazard. Mater. 2006, 136, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.; Godfrey, I.H. Develoment of the Use of Alternative Cements for the Treatment of Intermediate Level Waste. In Proceedings of the Waste Management (WM’07) 2007 Conference, Tucson, AZ, USA, 25 February–1 March 2007. [Google Scholar]
- Langton, C.A.; Stefanko, D.B.; Serrato, M.G.; Blankenship, J.K.; Griffin, W.B.; Long, J.T.; Waymer, J.T.; Matheny, D.; Singh, D. Use of Cementitious Materials for SRS Reactor Facility In-Situ Decommissioning-11620. In Proceedings of the Waste Management (WM’11) 2011 Conference, Phoenix, AZ, USA, 27 February–3 March 2011. [Google Scholar]
- Wagh, A.S.; Jeong, S.Y.; Singh, D.; Strain, R.; No, H.; Wescott, J. Stabilization of contaminated soil and wastewater with chemically bonded phosphate ceramics. In Proceedings of the Waste Management, Tucson, AZ, USA, 2–7 March 1997. [Google Scholar]
- Singh, D.; Wagh, A.S.; Cunnane, J.C.; Mayberry, J.L. Chemically bonded phosphate ceramics for low-level mixed-waste stabilization. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxicol. 1997, 32, 527–541. [Google Scholar] [CrossRef]
- Wescott, J.; Nelson, R.; Wagh, A.; Singh, D. Low-Level and Mixed Radioactive Waste In-Drum Solidification. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 1998, 2, 4–7. [Google Scholar] [CrossRef]
- Wagh, A.S.; Strain, R.; Jeong, S.Y.; Reed, D.; Krause, T.; Singh, D. Stabilization of Rocky Flats Pu-contaminated ash within chemically bonded phosphate ceramics. J. Nucl. Mater. 1999, 265, 295–307. [Google Scholar] [CrossRef]
- Wagh, A.S.; Singh, D.; Jeong, S.Y. Chemically bonded phosphate ceramics, Chapter 6-3. In Handbook of Mixed Waste Management Technology; Oh, C., Ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 1–18. [Google Scholar]
- Stefanko, D.B.; Langton, C.A.; Singh, D. Magnesium Monopotassium Phosphate Grout for P-Reactor Vessel in-Situ Decommissioning; (No. SRNL-STI-2010-00333 Revision 0); Savannah River Natl. Lab: Savannah River District, SC, USA, 2010. [Google Scholar]
- Covill, A.; Hyatt, N.C.; Hill, J.; Collier, N.C. Development of magnesium phosphate cements for encapsulation of radioactive waste. Adv. Appl. Ceram. 2011, 110, 151–156. [Google Scholar] [CrossRef]
- Lahalle, H.; Cau Dit Coumes, C.; Mesbah, A.; Lambertin, D.; Cannes, C.; Delpech, S.; Gauffinet, S. Investigation of magnesium phosphate cement hydration in diluted suspension and its retardation by boric acid. Cem. Concr. Res. 2016, 87, 77–86. [Google Scholar] [CrossRef]
- Lahalle, H.; Cau Dit Coumes, C.; Mercier, C.; Lambertin, D.; Cannes, C.; Delpech, S.; Gauffinet, S. Influence of the w/c ratio on the hydration process of a magnesium phosphate cement and on its retardation by boric acid. Cem. Concr. Res. 2018, 109, 159–174. [Google Scholar] [CrossRef]
- Viani, A.; Mácová, P.; Ševčík, R.; Zárybnická, L. Mechanism of magnesium phosphate cement retardation by citric acid. Ceram. Int. 2023, 49, 11112–11122. [Google Scholar] [CrossRef]
- Cau Dit Coumes, C.; Rousselet, A.; Xu, B.; Mercier, C.A.; Gauffinet, S. Investigation of aluminum nitrate as a set retarder of magnesium potassium phosphate cement: Mechanisms involved in diluted suspension. Cem. Concr. Res. 2021, 150, 106608. [Google Scholar] [CrossRef]
- Stefan, L.; Chaussadent, T.; Bessaies-Bey, H. Thiosulphates for Use as Set Retarders in Phosphomagnesium Cement Pastes. Patent WO2021123564A1, 20 December 2019. [Google Scholar]
- Xu, B.; Lothenbach, B.; Ma, H. Properties of fly ash blended magnesium potassium phosphate mortars: Effect of the ratio between fly ash and magnesia. Cem. Concr. Compos. 2018, 90, 169–177. [Google Scholar] [CrossRef]
- Xu, B.; Lothenbach, B.; Winnefeld, F. Influence of wollastonite on hydration and properties of magnesium potassium phosphate cements. Cem. Concr. Res. 2020, 131, 106012. [Google Scholar] [CrossRef]
- Dieguez, M.; Ruiz, A.I.; Cuevas, J.; Alonso, M.C.; García-Lodeiro, I.; Fernández, R. Evaluation of Fillers for Magnesium Potassium Phosphate Cement (MKPC) for the Encapsulation of Low and Intermediate Level Metallic Radioactive Wastes. Materials 2023, 16, 679. [Google Scholar] [CrossRef]
- Delpech, S.; Cannes, C.; Barré, N.; Tran, Q.T.; Sanchez, C.; Lahalle, H.; Lambertin, D.; Gauffinet, S.; Cau Dit Coumes, C. Kinetic Model of Aluminum Behavior in Cement-Based Matrices Analyzed by Impedance Spectroscopy. J. Electrochem. Soc. 2017, 164, C717–C727. [Google Scholar] [CrossRef]
- Perona, R.; Fernández-García, C.; García-Lodeiro, I.; Criado, M.; Bastidas, J.M.; Alonso, M.C. Corrosion behavior and immobilization of pure aluminum and Al−Mg alloy LLRW in magnesium potassium phosphate cements. J. Nucl. Mater. 2023, 582, 154501. [Google Scholar] [CrossRef]
- Lambertin, D.; Frizon, F.; Bart, F. Mg–Zr alloy behavior in basic solutions and immobilization in Portland cement and Na-geopolymer with sodium fluoride inhibitor. Surf. Coat. Technol. 2012, 206, 4567–4573. [Google Scholar] [CrossRef]
- Boubon, R.; Deschanels, X.; Cabié, M.; Rébiscoul, D. Evolution of Corrosion Products Formed during the Corrosion of MgZr Alloy in Poral Solutions Extracted from Na-Geopolymers Used as Conditioning Matrix for Nuclear Waste. Materials 2020, 13, 4958. [Google Scholar] [CrossRef] [PubMed]
- Chartier, D.; Muzeau, B.; Stefan, L.; Sanchez-Canet, J.; Monguillon, C. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag. J. Hazard. Mater. 2017, 326, 197–210. [Google Scholar] [CrossRef]
- Chartier, D.; Sanchez-Canet, J.; Antonucci, P.; Esnouf, S.; Renault, J.-P.; Farcy, O.; Lambertin, D.; Parraud, S.; Lamotte, H.; Coumes, C.C.D. Behaviour of magnesium phosphate cement-based materials under gamma and alpha irradiation. J. Nucl. Mater. 2020, 541, 152411. [Google Scholar] [CrossRef]
- EN 196-1; Methods of testing cement—Part 1: Determination of Strength. The British Standards Institution: London, UK, 2016.
- Alonso, M.C.; Garcia, J.L.; Walker, C.; Naito, M.; Petterson, S.; Puigdomenech, I.; Cunado, M.A.; Vuorio, M.; Ueda, H.; Fujisaki, K. Development of an Accurate pH Measurement Methodology for the Pore Fluids of Low pH Cementitious Materials; (No. R-12-02); Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 2012. [Google Scholar]
- Rodrigues, R.; Gaboreau, S.; Gance, J.; Ignatiadis, I.; Betelu, S. Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Constr. Build. Mater. 2020, 269, 121240. [Google Scholar] [CrossRef]
- Lasia, A. Electrochemical Impedance Spectroscopy and Its Applications; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Li, X.; Caes, S.; Pardoen, T.; De Schutter, G.; Hauffman, T.; Kursten, B. Inhibition effect of lithium salts on the corrosion of AA1100 aluminium alloy in ordinary Portland cement pastes. Corros. Sci. 2023, 221, 111325. [Google Scholar] [CrossRef]
- Bouhier, P.; Cannes, C.; Lambertin, D.; Grisolia, C.; Rodrigues, D.; Delpech, S. Evaluation of several conditioning matrices for the management of radioactive metal beryllium wastes. J. Nucl. Mater. 2022, 559, 153464. [Google Scholar] [CrossRef]
- Song, G. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete. Cem. Concr. Res. 2000, 30, 1723–1730. [Google Scholar] [CrossRef]
- Bouhier, P. Conditionnement des Dechets Nucleairesde Beryllium: Reactivite Dans Differentes Matrices Cimentaires Et Comparaison Avec l’aluminium. Ph.D. Thesis, Université Paris-Saclay, Paris, France, 2022. [Google Scholar]
- Hu, X.; Shi, C.; Liu, X.; Zhang, J.; de Schutter, G. A review on microstructural characterization of cement-based materials by AC impedance spectroscopy. Cem. Concr. Compos. 2019, 100, 1–14. [Google Scholar] [CrossRef]
- Andrade, C.; Blanco, V.M.; Collazo, A.; Keddam, M.; Nóvoa, X.R.; Takenouti, H. Cement paste hardening process studied by impedance spectroscopy. Electrochim. Acta 1999, 44, 4313–4318. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, J. Effect of Partial replacement of Portland cement with micro- silica on mechanical characteristics of concrete and corrosion behavior of mild steel in 1M HCl. Int. J. Electrochem. Sci. 2020, 15, 12149–12159. [Google Scholar] [CrossRef]
- Cruz, J.M.; Fita, I.C.; Soriano, L.; Payá, J.; Borrachero, M.V. The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans. Cem. Concr. Res. 2013, 50, 51–61. [Google Scholar] [CrossRef]
- Williams, A.B.; Taylor, F.J. Electronic Filter Design Handbook, 4th ed.; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Frizon, F.; Galle, C. Experimental investigations of diffusive and convective transport of inert gas through cement pastes. J. Porous Media 2009, 12, 221–234. [Google Scholar] [CrossRef]
- Park, J.O.; Paik, C.H.; Huang, Y.H.; Alkire, R.C. Influence of Fe-Rich Intermetallic Inclusions on Pit Initiation on Aluminum Alloys in Aerated NaCl. J. Electrochem. Soc. 1999, 146, 517–523. [Google Scholar] [CrossRef]
- Aziz, P.; Godard, H. Pitting Corrosion Characteristics of Aluminium. Corrosion 1954, 10, 269–272. [Google Scholar] [CrossRef]
- Nisancioglu, K. Electrochemical behavior of Aluminum-base intermetallics containing iron. J. Electrochem. Soc. 1990, 137, 69–77. [Google Scholar] [CrossRef]
- Nisancioglu, K.; Lunder, O. Significance of the electrochemistry of Al-Base intermetallics in determining the corrosion behavior of aluminum alloys. In Aluminum Alloys: Their Physical and Mechanical Properties; Proc. ICAA1: Charlottesville, VA, USA, 1986; Volume 2, pp. 1125–1140. [Google Scholar]
Metal | Pure Al | Al/Mg2 | Al/Mg3 | Al/Mg4 | Al/Mg4.5 | Pure Mg | |
---|---|---|---|---|---|---|---|
Reference following ANSI H35.1 | 5251 | 5754 | 5086 | 5083 | |||
Thickness (mm) | 0.5 | 1.5 | 1.5 | 1.5 | 1.2 | 1.5 | |
Supplier | Alfa Aesar | AMGC Castellet | AMGC Castellet | Neyco | Goodfellow | Goodfellow | |
Composition (wt%) | Al | 99.90 | 96.80 | 96.30 | 94.90 | 93.70 | <0.05 |
Mg | <0.05 | 2.10 | 3.10 | 4.00 | 4.80 | 99.90 | |
Fe | 0.50 | 0.24 | 0.28 | 0.37 | <0.05 | ||
Mn | 0.21 | 0.14 | 0.48 | 0.74 | |||
Si | 0.22 | 0.09 | 0.09 | 0.16 | |||
Cr | <0.05 | 0.07 | 0.07 | 0.12 | |||
Cu, Zn, Ca, Bi | <0.05 |
Raw Constituents | Weight (g) |
---|---|
MgO | 129 |
KH2PO4 | 437 |
water | 289 |
fly ash | 567 |
sand | 567 |
B(OH)3 | 11.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poras, G.; Cau Dit Coumes, C.; Antonucci, P.; Cannes, C.; Delpech, S.; Perrin, S. Electrochemical Behavior of Al/Mg Alloys Immobilized in a Magnesium Potassium Phosphate Cement-Based Mortar. Materials 2023, 16, 5415. https://doi.org/10.3390/ma16155415
Poras G, Cau Dit Coumes C, Antonucci P, Cannes C, Delpech S, Perrin S. Electrochemical Behavior of Al/Mg Alloys Immobilized in a Magnesium Potassium Phosphate Cement-Based Mortar. Materials. 2023; 16(15):5415. https://doi.org/10.3390/ma16155415
Chicago/Turabian StylePoras, Gabriel, Céline Cau Dit Coumes, Pascal Antonucci, Céline Cannes, Sylvie Delpech, and Stéphane Perrin. 2023. "Electrochemical Behavior of Al/Mg Alloys Immobilized in a Magnesium Potassium Phosphate Cement-Based Mortar" Materials 16, no. 15: 5415. https://doi.org/10.3390/ma16155415
APA StylePoras, G., Cau Dit Coumes, C., Antonucci, P., Cannes, C., Delpech, S., & Perrin, S. (2023). Electrochemical Behavior of Al/Mg Alloys Immobilized in a Magnesium Potassium Phosphate Cement-Based Mortar. Materials, 16(15), 5415. https://doi.org/10.3390/ma16155415