Carbon-Fiber-Recycling Strategies: A Secondary Waste Stream Used for PA6,6 Thermoplastic Composite Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Filament Extrusion for 3D Printing
- Neat PA6,6 filament
- Filament of PA6,6 + 5% rCF, i.e., with the addition of 5 wt.% of recycled CFs
- Filament of PA6,6 + 10% rCF, i.e., with the addition of 10 wt.% of recycled CFs
2.1.2. 3D Printing
2.2. Methods
2.2.1. SEM Analysis and Sample Preparation (Carbon Sputtering Technique and Cryogenic Fracture)
2.2.2. Density Measurements
2.2.3. Study of the Dimensional Distribution of the Fibers
2.2.4. Tensile Testing of the Filaments
2.2.5. Study of Fiber Homogeneity within the Filaments
2.2.6. Tensile Tests of the 3D-Printed Samples
2.2.7. Microstructural Analysis
3. Results
3.1. Preliminary Analysis of PA6,6 Neat and Composite Filaments for 3D Printing
3.1.1. SEM Analysis of Filament Fracture Surfaces
3.1.2. Evaluation of the Effective Percentage of Reinforcement
3.1.3. Dimensional Study of Carbon Microfibers
3.1.4. Tensile Tests of 3D Printing Filaments
3.2. Characterization of Tensile Properties of Neat PA6,6 and Resulting Composites
3.2.1. Tensile Tests of 3D-Printed Specimens
3.2.2. Microstructural Analysis
4. Optimization Hypothesis
5. Conclusions
- The extrusion parameters were successfully optimized to obtain composites filaments suitable for 3D printing processing.
- The mechanical characterization of the printed filaments revealed that rCFs increase the Young’s modulus and tensile strength of the composites by up to 25% and 11% (10 wt.% of rCFs), in comparison to the performance of the neat sample, respectively.
- Tensile tests of printed specimens highlighted a similar increment in strength performance (+16% in Young’s modulus and +9% in tensile strength for 5 wt.% rCFs and + 21% in Young’s modulus and +5% in tensile strength for 10 wt.% rCFs). SEM analysis showed microstructures not affected by the common defects induced by the layer-by-layer deposition of additive fabrication. This demonstrates the achievement of well-selected printing parameters for the processing of the composites developed in this work.
- The average length of the microfibers used in this research was estimated at 30 μm, too short for consistently improving strength. In addition, a complication factor for this case is the gradual reduction in size that the fibers undergo following extrusion. The dimensional optimization of the output rCF fraction from the ball milling process is undoubtedly a challenge to be faced in order to maximize the mechanical performance of composites.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Chevali, V.S.; Wang, H.; Wang, C.H. Current status of carbon fibre and carbon fibre composites recycling. Compos. Part B Eng. 2020, 193, 108053. [Google Scholar] [CrossRef]
- Giorgini, L.; Benelli, T.; Brancolini, G.; Mazzocchetti, L. Recycling of carbon fiber reinforced composite waste to close their life cycle in a cradle-to-cradle approach. Curr. Opin. Green Sustain. Chem. 2020, 26, 100368. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Prabhakara, H.M.; Bramer, E.A.; Dierkes, W.; Akkerman, R.; Brem, G. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour. Conserv. Recycl. 2018, 136, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Valente, M.; Rossitti, I.; Biblioteca, I.; Sambucci, M. Thermoplastic Composite Materials Approach for More Circular Components: From Monomer to In Situ Polymerization, a Review. J. Compos. Sci. 2022, 6, 132. [Google Scholar] [CrossRef]
- Nunes, A.O.; Viana, L.R.; Guineheuc, P.M.; da Silva Moris, V.A.; de Paiva, J.M.F.; Barna, R.; Soudais, Y. Life cycle assessment of a steam thermolysis process to recover carbon fibers from carbon fiber-reinforced polymer waste. Int. J. Life Cycle Assess. 2018, 23, 1825–1838. [Google Scholar] [CrossRef] [Green Version]
- Anane-Fenin, K.; Akinlabi, E.T.; Akinlabi, E.T. Recycling of fibre reinforced composites: A review of current technologies. In Proceedings of the DII-2017 Conference on Infrastructure Development and Investment Strategies for Africa, Livingstone, Zambia, 30 August–1 September 2017. [Google Scholar]
- Pimenta, S.; Pinho, S.T. Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook. Waste Manag. 2011, 31, 378–392. [Google Scholar] [CrossRef] [Green Version]
- Mazzocchetti, L.; Benelli, T.; D’Angelo, E.; Leonardi, C.; Zattini, G.; Giorgini, L. Validation of carbon fibers recycling by pyro-gasification: The influence of oxidation conditions to obtain clean fibers and promote fiber/matrix adhesion in epoxy composites. Compos. Part A Appl. Sci. Manuf. 2018, 112, 504–514. [Google Scholar] [CrossRef]
- Giorgini, L.; Benelli, T.; Mazzocchetti, L.; Leonardi, C.; Zattini, G.; Minak, G.; Dolcini, E.; Tosi, C. Recovery of carbon fibers from cured and uncured carbon fiber reinforced composites wastes and their use as feedstock for a new composite production. Polym. Compos. 2015, 36, 1084–1095. [Google Scholar] [CrossRef]
- Sayam, A.; Rahman, A.M.; Rahman, M.S.; Smriti, S.A.; Ahmed, F.; Rabbi, M.F.; Hossain, M.; Faruque, M.O. A review on carbon fiber-reinforced hierarchical composites: Mechanical performance, manufacturing process, structural applications and allied challenges. Carbon Lett. 2022, 32, 1173–1205. [Google Scholar] [CrossRef]
- Fu, S.Y.; Lauke, B.; Mäder, E.; Yue, C.Y.; Hu, X.; Mai, Y.W. Hybrid effects on tensile properties of hybrid short-glass-fiber-and short-carbon-fiber-reinforced polypropylene composites. J. Mater. Sci. 2001, 36, 1243–1251. [Google Scholar] [CrossRef]
- Dickson, A.N.; Abourayana, H.M.; Dowling, D.P. 3D printing of fibre-reinforced thermoplastic composites using fused filament fabrication—A review. Polymers 2020, 12, 2188. [Google Scholar] [CrossRef] [PubMed]
- Blok, L.G.; Woods, B.K.S. 3D printed composites Benchmarking the state-of-the-art. In Proceedings of the 21st International Conference on Composite Materials, Xi’an, China, 20–25 August 2017; Available online: http://www.iccm21.org/index.php?m=content&c=index&a=lists&catid=5 (accessed on 1 January 2020).
- Ferreira, R.T.L.; Amatte, I.C.; Dutra, T.A.; Bürger, D. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Compos. Part B Eng. 2017, 124, 88–100. [Google Scholar] [CrossRef]
- Blok, L.G.; Longana, M.L.; Yu, H.; Woods, B.K. An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit. Manuf. 2018, 22, 176–186. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Hu, Y.; Wang, H. Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties. J. Compos. Mater. 2017, 51, 451–462. [Google Scholar] [CrossRef]
- Wang, P.; Zou, B.; Ding, S.; Huang, C.; Shi, Z.; Ma, Y.; Yao, P. Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing. Compos. Part B Eng. 2020, 198, 108175. [Google Scholar] [CrossRef]
- Giani, N.; Mazzocchetti, L.; Benelli, T.; Picchioni, F.; Giorgini, L. Towards sustainability in 3D printing of thermoplastic composites: Evaluation of recycled carbon fibers as reinforcing agent for FDM filament production and 3D printing. Compos. Part A Appl. Sci. Manuf. 2022, 159, 107002. [Google Scholar] [CrossRef]
- Cardona, C.; Curdes, A.H.; Isaacs, A.J. Effects of filament diameter tolerances in fused filament fabrication. IU J. Undergrad. Res. 2016, 2, 44–47. [Google Scholar] [CrossRef] [Green Version]
- Haq, R.H.A.; Marwah, O.F.; Rahman, M.A.; Haw, H.F.; Abdullah, H.; Ahmad, S. 3D Printer parameters analysis for PCL/PLA filament wire using Design of Experiment (DOE). Mater. Sci. Eng. 2019, 607, 012001. [Google Scholar] [CrossRef] [Green Version]
- Gabaude, C.M.; Guillot, M.; Gautier, J.C.; Saudemon, P.; Chulia, D. Effects of true density, compacted mass, compression speed, and punch deformation on the mean yield pressure. J. Pharm. Sci. 1999, 88, 725–730. [Google Scholar] [CrossRef]
- Chutinan, S.; Platt, J.A.; Cochran, M.A.; Moore, B.K. Volumetric dimensional change of six direct core materials. Dent. Mater. 2004, 20, 345–351. [Google Scholar] [CrossRef]
- Polline, M.; Mutua, J.M.; Mbuya, T.O.; Ernest, K. Recipe development and mechanical characterization of carbon fibre reinforced recycled polypropylene 3D printing filament. Open J. Compos. Mater. 2021, 11, 47–61. [Google Scholar] [CrossRef]
- Capone, C.; Di Landro, L.; Inzoli, F.; Penco, M.; Sartore, L. Thermal and mechanical degradation during polymer extrusion processing. Polym. Eng. Sci. 2007, 47, 1813–1819. [Google Scholar] [CrossRef]
- Yasim-Anuar, T.A.T.; Ariffin, H.; Norrrahim, M.N.F.; Hassan, M.A.; Andou, Y.; Tsukegi, T.; Nishida, H. Well-Dispersed Cellulose Nanofiber in Low Density Polyethylene Nanocomposite by Liquid-Assisted Extrusion. Polymers 2020, 12, 927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, S.; Jiang, Q.; Memon, H.; Qiu, Y.; Liu, W.; Wei, Y. Effects of styrene-acrylic sizing on the mechanical properties of carbon fiber thermoplastic towpregs and their composites. Molecules 2018, 23, 547. [Google Scholar] [CrossRef] [Green Version]
- Berzin, F.; Beaugrand, J.; Dobosz, S.; Budtova, T.; Vergnes, B. Lignocellulosic fiber breakage in a molten polymer. Part 3. Modeling of the dimensional change of the fibers during compounding by twin screw extrusion. Compos. Part A Appl. Sci. Manuf. 2017, 101, 422–431. [Google Scholar] [CrossRef]
- Fu, S.Y.; Lauke, B.; Mäder, E.; Yue, C.Y.; Hu, X.J. Tensile properties of short-glass-fiber-and short-carbon-fiber-reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2000, 31, 1117–1125. [Google Scholar] [CrossRef]
- Al-Mazrouei, N.; Al-Marzouqi, A.H.; Ahmed, W. Characterization and Sustainability Potential of Recycling 3D-Printed Nylon Composite Wastes. Sustainability 2022, 14, 10458. [Google Scholar] [CrossRef]
- Wang, L.; Ma, G.; Liu, T.; Buswell, R.; Li, Z. Interlayer reinforcement of 3D printed concrete by the in-process deposition of U-nails. Cem. Concr. Res. 2021, 148, 106535. [Google Scholar] [CrossRef]
- Lewicki, J.P.; Rodriguez, J.N.; Zhu, C.; Worsley, M.A.; Wu, A.S.; Kanarska, Y.; Horn, J.D.; King, M.J. 3D-printing of meso-structurally ordered carbon fiber/polymer composites with unprecedented orthotropic physical properties. Sci. Rep. 2017, 7, 43401. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Cotton, C.; Sun, J.; Heider, D.; Gu, B.; Sun, B.; Chou, T.W. Interfacial bonding strength of short carbon fiber/acrylonitrile-butadiene-styrene composites fabricated by fused deposition modeling. Compos. Part B Eng. 2018, 137, 51–59. [Google Scholar] [CrossRef]
- Liao, G.; Li, Z.; Cheng, Y.; Xu, D.; Zhu, D.; Jiang, S.; Guo, J.; Zhu, Y. Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling. Mater. Des. 2018, 139, 283–292. [Google Scholar] [CrossRef]
- Dul, S.; Fambri, L.; Pegoretti, A. High-performance polyamide/carbon fiber composites for fused filament fabrication: Mechanical and functional performances. J. Mater. Eng. Perform. 2021, 30, 5066–5085. [Google Scholar] [CrossRef]
- Blanco, I.; Cicala, G.; Recca, G.; Tosto, C. Specific Heat Capacity and Thermal Conductivity Measurements of PLA-Based 3D-Printed Parts with Milled Carbon Fiber Reinforcement. Entropy 2022, 24, 654. [Google Scholar] [CrossRef] [PubMed]
- Tekinalp, H.L.; Kunc, V.; Velez-Garcia, G.M.; Duty, C.E.; Love, L.J.; Naskar, A.K.; Blue, C.A.; Ozcan, S. Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos. Sci. Technol. 2014, 105, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Sang, L.; Wang, C.; Wang, Y.; Wei, Z. Thermo-oxidative ageing effect on mechanical properties and morphology of short fibre reinforced polyamide composites–comparison of carbon and glass fibres. RSC Adv. 2017, 7, 43334–43344. [Google Scholar] [CrossRef]
- Kiss, P.; Glinz, J.; Stadlbauer, W.; Burgstaller, C.; Archodoulaki, V.M. The effect of thermally desized carbon fibre reinforcement on the flexural and impact properties of PA6, PPS and PEEK composite laminates: A comparative study. Compos. Part B Eng. 2021, 215, 108844. [Google Scholar] [CrossRef]
- Kim, D.K.; Kang, S.H.; Han, W.; Kim, K.W.; Kim, B.J. Facile method to enhance the mechanical interfacial strength between carbon fibers and polyamide 6 using modified silane coupling agents. Carbon Lett. 2022, 32, 1463–1472. [Google Scholar] [CrossRef]
- Crawford, R.J. Mechanical Behaviour of Composites. In Plastics Engineering, 3rd ed.; Crawford, R.J., Ed.; Butterworth-Heinemann: Oxford, UK, 1998; pp. 168–244. [Google Scholar]
- Tanaka, K.; Mizuno, S.; Honda, H.; Katayama, T.; Enoki, S. Effect of water absorption on the mechanical properties of carbon fiber/polyamide composites. J. Solid Mech. Mater. Eng. 2013, 7, 520–529. [Google Scholar] [CrossRef] [Green Version]
Properties | Values | Comments |
---|---|---|
Density | 1.14 g/cc | ISO 1183-1 |
Water absorption | 8.5% | ISO 62 |
Moisture absorption at equilibrium | 2.5% | 23 °C/50% R.H.; ISO 62 |
Tensile strength, yield | 83.0 MPa | 50 mm/min; ISO 527-1 |
Elongation at break | 25% | 50 mm/min, normal strain; ISO 527-1 |
Elongation at yield | 5.0% | 50 mm/min; ISO 527-1 |
Tensile modulus | 3.00 GPa | 1 mm/min; ISO 527-1 |
Flexural strength | 117 GPa | ASTM D790 test |
Flexural modulus | 2.90 GPa | ASTM D790 test |
Melting point | 257 °C | 10 K/min ASTM D3418 test |
PA6,6 Neat Filament | PA6,6 + rCF | |
---|---|---|
Zone 1 temperature, °C | 255 | 260 |
Zone 2 temperature, °C | 255 | 260 |
Zone 3 temperature, °C | 260 | 265 |
Zone 4 temperature, °C | 260 | 265 |
Zone 5 temperature, °C | 260 | 265 |
Zone 6 temperature, °C | 255 | 260 |
Zone 7 temperature, °C | 250 | 255 |
Die temperature, °C | 235 | 240 |
Screw speed, rpm | 150 | 150 |
Sample | Mean ± Std. Dev. |
---|---|
PA6,6 neat | 1.129 ± 0.026 g/cm3 |
PA6,6 + 5 wt.% rCF | 1.148 ± 0.019 g/cm3 |
PA6,6 + 10 wt.% rCF | 1.164 ± 0.014 g/cm3 |
Material | Method | Value |
---|---|---|
rCFs | Helium pycnometer | 1.917 g/cm3 |
PA6,6 neat filament | Buoyancy balance | 1.129 g/cm3 |
PA6,6 + 5 wt.% rCF filament | Buoyancy balance | 1.148 g/cm3 |
PA6,6 + 10 wt.% rCF filament | Buoyancy balance | 1.164 g/cm3 |
Percentage of rCF reinforcement | ||
PA6,6 + 5 wt.% rCF filament | Rule of mixtures | 2.41% v/v |
PA6,6 + 10 wt.% rCF filament | 4.44% v/v |
Material | Value |
---|---|
PA6,6 + 5 wt.% rCF filament | 3.40% v/v |
PA6,6 + 10 wt.% rCF filament | 6.79% v/v |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valente, M.; Sambucci, M.; Rossitti, I.; Abruzzese, S.; Sergi, C.; Sarasini, F.; Tirillò, J. Carbon-Fiber-Recycling Strategies: A Secondary Waste Stream Used for PA6,6 Thermoplastic Composite Applications. Materials 2023, 16, 5436. https://doi.org/10.3390/ma16155436
Valente M, Sambucci M, Rossitti I, Abruzzese S, Sergi C, Sarasini F, Tirillò J. Carbon-Fiber-Recycling Strategies: A Secondary Waste Stream Used for PA6,6 Thermoplastic Composite Applications. Materials. 2023; 16(15):5436. https://doi.org/10.3390/ma16155436
Chicago/Turabian StyleValente, Marco, Matteo Sambucci, Ilaria Rossitti, Silvia Abruzzese, Claudia Sergi, Fabrizio Sarasini, and Jacopo Tirillò. 2023. "Carbon-Fiber-Recycling Strategies: A Secondary Waste Stream Used for PA6,6 Thermoplastic Composite Applications" Materials 16, no. 15: 5436. https://doi.org/10.3390/ma16155436
APA StyleValente, M., Sambucci, M., Rossitti, I., Abruzzese, S., Sergi, C., Sarasini, F., & Tirillò, J. (2023). Carbon-Fiber-Recycling Strategies: A Secondary Waste Stream Used for PA6,6 Thermoplastic Composite Applications. Materials, 16(15), 5436. https://doi.org/10.3390/ma16155436