Microstructural Evolution and Micro-Corrosion Behaviour of Flash-Welded U71Mn Joints as a Function of Post-Weld Heat Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of U71Mn Welded Joints
2.2. Electrochemical Test
2.3. Surface Morphology
3. Results and Discussion
3.1. Metallographic Microstructural Characterisation
3.2. Polarisation Curve
3.3. Resistance
3.4. Morphological Analysis of the Corrosion Products
3.5. Corrosion Mechanism
4. Conclusions
- The microstructural analysis revealed that the main structure of the U71Mn welded joints and the BM consisted of pearlite and a small amount of ferrite. Due to re-austenization after post-weld heat treatment, uniformly distributed fine grains can be found in the weld zones.
- Because the microstructures of the welded joint were disrupted and then reconfigured after welding, the U71Mn welded joints exhibited a higher corrosion current density and smaller impedance value than the BM.
- After the post-weld heat treatment, the grain microstructure of the U71Mn weld bead was finer and more homogeneous, resulting in a smaller corrosion current density, a larger absolute self-corrosion potential value, and improved corrosion resistance.
- When the O and Cl− adsorbed and accumulated in local areas in the corrosion products of the weld microzones, these elements induced an inhomogeneous response, while a less severe corrosion response in zones after the post-weld heat treatment which were relieved with a compact and thick corrosion product layer.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zhou, H.; Shi, Y.J.; Feng, B.R. Mechanical Properties and Fracture Toughness of Rail Steels and Thermite Welds at Low Temperature. Int. J. Miner. Metall. Mater. 2012, 19, 409–420. [Google Scholar] [CrossRef]
- Qin, Y.; Zheng, B. The Qinghai–Tibet Railway: A Landmark Project and Its Subsequent Environmental Challenges. Environ. Dev. Sustain. 2010, 12, 859–873. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, L.C.; Maiorino, M.; Liu, J.P.; Ding, H.H.; Lewis, R.; Meli, E.; Rindi, A.; Liu, Q.Y.; Wang, W.J. Comparison of Wear and Rolling Contact Fatigue Behaviours of Bainitic and Pearlitic Rails under Various Rolling-Sliding Conditions. Wear 2020, 460–461, 203455. [Google Scholar] [CrossRef]
- Zhao, J.; Miao, H.; Kan, Q.; Fu, P.; Ding, L.; Kang, G.; Wang, P. Numerical Investigation on the Rolling Contact Wear and Fatigue of Laser Dispersed Quenched U71Mn Rail. Int. J. Fatigue 2021, 143, 106010. [Google Scholar] [CrossRef]
- Jian, H.; Wang, Y.; Yang, X.; Xiao, K. Microstructure and Fatigue Crack Growth Behavior in Welding Joint of Al-Mg Alloy. Eng. Fail. Anal. 2021, 120, 105034. [Google Scholar] [CrossRef]
- Liu, F.C.; Hovanski, Y.; Miles, M.P.; Sorensen, C.D.; Nelson, T.W. A Review of Friction Stir Welding of Steels: Tool, Material Flow, Microstructure, and Properties. J. Mater. Sci. Technol. 2018, 34, 39–57. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Ji, P.; Wu, R.Z.; Wang, Y.; Turakhodjaev, N.; Kudratkhon, B. Microstructure, Mechanical Properties and Corrosion Resistance of Friction Stir Welded Joint of Al–Mg–Mn–Zr–Er Alloy. Int. J. Mater. Res. 2023, 114, 65–76. [Google Scholar] [CrossRef]
- Ma, R.; Huang, D.; Zhang, J.; Zhang, Y.; Lv, Q. Effects of Rail Flash-Butt Welding and Post-Weld Heat Treatment Processes Meeting Different National Standards on Residual Stresses of Welded Joints. Int. J. Mater. Res. 2020, 111, 780–787. [Google Scholar] [CrossRef]
- Wang, J.; Ma, C.; Han, J.; Jiang, Z.; Linton, V. Acquisition of HSLA Steel Weld Joints with Excellent Mechanical Performance through Flash Butt Welding Physical Simulation. Mater. Lett. 2021, 303, 130511. [Google Scholar] [CrossRef]
- Yang, Y.L.; Zhou, L.L.; Chen, H.B.; Wang, J.; Qiao, H.C.; Lu, Y.; Qin, G.W. Laser Shock Peening Fe-Based Coatings for Enhancing Wear and Corrosion Resistance. Mater. Sci. Technol. 2021, 37, 1214–1224. [Google Scholar] [CrossRef]
- Liu, C.P.; Zhao, X.J.; Liu, P.T.; Pan, J.Z.; Ren, R.M. Influence of Contact Stress on Surface Microstructure and Wear Property of D2/U71Mn Wheel-Rail Material. Materials 2019, 12, 3268. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Nuam, V.L.; Deng, Y.; Yuan, Y.; Liu, M.; Yao, W.; Wang, N. Insight into the Passivation and Corrosion Behavior of Additive Manufacturing Repaired Single Crystal Superalloy. Corros. Sci. 2022, 203, 110340. [Google Scholar] [CrossRef]
- Park, J.H.; Ko, K.P.; Hagio, T.; Ichino, R.; Lee, M.H. Effect of Zn-Mg Interlayer on the Corrosion Resistance of Multilayer Zn-Based Coating Fabricated by Physical Vapor Deposition Process. Corros. Sci. 2022, 202, 110330. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, G.; Cao, Y.; Li, Q.; Zhu, Y.; Huang, X.; Liu, Q. Investigation on Microstructure and Localized Corrosion Behavior in the Stir Zone of Dissimilar Friction-Stir-Welded AA2024/7075 Joint. J. Mater. Sci. 2020, 55, 15005–15032. [Google Scholar] [CrossRef]
- Ming, J.; Zhou, X.; Jiang, L.; Shi, J. Corrosion Resistance of Low-Alloy Steel in Concrete Subjected to Long-Term Chloride Attack: Characterization of Surface Conditions and Rust Layers. Corros. Sci. 2022, 203, 110370. [Google Scholar] [CrossRef]
- Sui, F.; An, T.; Zheng, S.; Chen, L.; Li, S. Influence of Effective Strain on the Corrosion Behavior of Nickel-Based GH4710 Superalloy in Chloride Solutions. Corros. Sci. 2022, 204, 110386. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Yu, H.; Liu, J.; Cheng, L.; Hu, S.E.; Wu, K. Effects of Pearlite on Corrosion Initiation and Propagation in Weathering Steels in Marine Environments. J. Mater. Sci. 2022, 57, 6039–6055. [Google Scholar] [CrossRef]
- Chaves, I.A.; Melchers, R.E. Pitting corrosion in pipeline steel weld zones. Corros. Sci. 2011, 53, 4026–4032. [Google Scholar] [CrossRef]
- Moshtaghi, M.; Loder, B.; Safyari, M.; Willidal, T.; Hojo, T.; Mori, G. Hydrogen trapping and desorption affected by ferrite grain boundary types in shielded metal and flux-cored arc weldments with Ni addition. Int. J. Hydrogen Energy 2022, 47, 20676–20683. [Google Scholar] [CrossRef]
- Lanzutti, A.; Andreatta, F.; Lekka, M.; Fedrizzi, L. Microstructural and Local Electrochemical Characterisation of Gr. 91 Steel-Welded Joints as Function of Post-Weld Heat Treatments. Corros. Sci. 2019, 148, 407–417. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, Z.-M.; Wang, J.-Z.; Wang, J.-Q.; Han, E.-H. Corrosion Behavior of Different Parts of the Weld of 316L/52M/A508 Dissimilar Metal Welded Joint in Simulated Pressurized Water Reactor Primary Water. Mater. Corros. 2015, 66, 1435–1444. [Google Scholar] [CrossRef]
- Xu, Y.; Hou, X.; Shi, Y.; Zhang, W.; Gu, Y.; Feng, C.; Volodymyr, K. Correlation between the Microstructure and Corrosion Behaviour of Copper/316L Stainless-Steel Dissimilar-Metal Welded Joints. Corros. Sci. 2021, 191, 109729. [Google Scholar] [CrossRef]
- Li, B.; Wu, M.; Jin, W.; Zhou, Y.; Ma, C.; Wang, X. Corrosion Behavior of Weld Joints of Aluminum Alloy A7N01P-T4 for High-speed Trains. Corros. Sci. Prot. Technol. 2014, 26, 223–227. [Google Scholar] [CrossRef]
- Fattah-Alhosseini, A.; Naseri, M.; Gholami, D.; Imantalab, O.; Attarzadeh, F.R.; Keshavarz, M.K. Microstructure and Corrosion Characterization of the Nugget Region in Dissimilar Friction-Stir-Welded AA5083 and AA1050. J. Mater. Sci. 2019, 54, 777–790. [Google Scholar] [CrossRef]
- Hu, Y.; Watson, M.; Maiorino, M.; Zhou, L.; Wang, W.J.; Ding, H.H.; Lewis, R.; Meli, E.; Rindi, A.; Liu, Q.Y.; et al. Experimental Study on Wear Properties of Wheel and Rail Materials with Different Hardness Values. Wear 2021, 477, 203831. [Google Scholar] [CrossRef]
- Gong, L.; Liu, H.; Lv, C.; Zhao, L. Effect of Alloying Composition on Microstructure and Mechanical Properties of Ultranarrow Gap Welded Joints of U71Mn Rail Steel. Adv. Mater. Sci. Eng. 2021, 2021, 9282463. [Google Scholar] [CrossRef]
- Zhong, W.; Hu, J.J.; Li, Z.B.; Liu, Q.Y.; Zhou, Z.R. A Study of Rolling Contact Fatigue Crack Growth in U75V and U71Mn Rails. Wear 2011, 271, 388–392. [Google Scholar] [CrossRef]
- Pan, J.; Chen, L.; Liu, C.; Zhang, G.; Ren, R. Relationship between the Microstructural Evolution and Wear Behavior of U71Mn Rail Steel. J. Materi. Eng. Perform. 2021, 30, 1090–1098. [Google Scholar] [CrossRef]
- Yu, X.; Feng, L.; Qin, S.; Zhang, Y.; He, Y. Fracture Analysis of U71Mn Rail Flash-Butt Welding Joint. Case Stud. Eng. Fail. Anal. 2015, 4, 20–25. [Google Scholar] [CrossRef] [Green Version]
- TB/T 1632-2014; Railway Industry Standard of the People’s Republic of China, Railway Applications-Track-Flash Butt Welding of Rails. National Railway Administration: Beijing, China, 2014.
- TB/T 2344-2020; Railway Industry Standard of the People’s Republic of China. Rails—Part 1: 43 kg/m~75 kg/m Rails. National Railway Administration: Beijing, China, 2020.
- Sinhmar, S.; Dwivedi, D.K. A Study on Corrosion Behavior of Friction Stir Welded and Tungsten Inert Gas Welded AA2014 Aluminium Alloy. Corros. Sci. 2018, 133, 25–35. [Google Scholar] [CrossRef]
- Solmaz, R.; Altunbaş Şahin, E.A.; Döner, A.; Kardaş, G. The Investigation of Synergistic Inhibition Effect of Rhodanine and Iodide Ion on the Corrosion of Copper in Sulphuric Acid Solution. Corros. Sci. 2011, 53, 3231–3240. [Google Scholar] [CrossRef]
- Wen, M.; Sun, Y.; Yu, J.; Yang, S.; Hou, X.; Yang, Y.; Sun, X.; Zhou, Y. Amelioration of Weld-Crack Resistance of the M951 Superalloy by Engineering Grain Boundaries. J. Mater. Sci. Technol. 2021, 78, 260–267. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, Y.; Han, Y.; Peng, Q.; Han, E.H. Environmentally Assisted Cracking in the Fusion Boundary Region of a SA508-Alloy 52M Dissimilar Weld Joint in Simulated Primary Pressurized Water Reactor Environments. Corros. Sci. 2021, 190, 109668. [Google Scholar] [CrossRef]
- Fang, X.Y.; Zhang, H.N.; Ma, D.W. Influence of Initial Crack on Fatigue Crack Propagation with Mixed Mode in U71Mn Rail Subsurface. Eng. Fail. Anal. 2022, 136, 106220. [Google Scholar] [CrossRef]
- Wang, Y.; Chai, P.; Ma, H.; Cao, X.; Zhang, Y. Formation Mechanism and Fracture Behavior in Extra-Filling Refill Friction Stir Spot Weld for Al–Cu–Mg Aluminum Alloy. J. Mater. Sci. 2020, 55, 358–374. [Google Scholar] [CrossRef]
- Singh, J.; Shahi, A.S. Microstructure and Corrosion Behavior of Duplex Stainless Steel Electron Beam Welded Joint. J. Mater. Sci. 2022, 57, 9454–9479. [Google Scholar] [CrossRef]
- Chen, G.; Liu, S.; Huang, C.; Ma, Y.; Li, Y.; Zhang, B.; Gao, L.; Zhang, B.; Wang, P.; Qu, X. In-Situ Phase Transformation and Corrosion Behavior of TiNi via LPBF. Corros. Sci. 2022, 203, 110348. [Google Scholar] [CrossRef]
- Xu, W.; Deng, Y.; Zhang, B.; Zhang, J.; Peng, Z.; Hou, B.; Duan, J. Crevice corrosion of U75V high-speed rail steel with varying crevice gap size by in-situ monitoring. J. Mater. Res. Technol. 2022, 16, 1856–1874. [Google Scholar] [CrossRef]
Composition | C | Si | Mn | S | P | Fe |
---|---|---|---|---|---|---|
Standard requirements [31] | 0.65–0.8 | 0.15–0.58 | 0.70–1.20 | ≤0.025 | ≤0.025 | Remaining |
Test result | 0.69 | 0.30 | 0.99 | 0.010 | 0.015 | Remaining |
Sample | R1 (Ω) | Y0-Q1 (Ω−1cm−2Sn) | n-Q1 | R2 (Ω cm2) | Y0-Q2 (Ω−1cm−2Sn) | n-Q2 | R3 (Ω cm2) | X2 Chi-Square | R2 + R3 (Ω cm2) |
---|---|---|---|---|---|---|---|---|---|
BM | 2.519 | 3.55 × 10−5 | 0.91124 | 18 | 9.92 × 10−4 | 0.86369 | 1419 | 3.42 × 10−3 | 1437 |
HAZ of W1 | 1.864 | 5.32 × 10−5 | 0.9378 | 17.64 | 1.59 × 10−3 | 0.6248 | 985.4 | 1.03 × 10−4 | 1003.04 |
WM of W1 | 1.753 | 1.85 × 10−5 | 0.9295 | 5.99 | 1.25 × 10−3 | 0.58445 | 823.9 | 1.13 × 10−3 | 829.89 |
HAZ of W2 | 2.505 | 4.69 × 10−5 | 0.8855 | 19.3 | 1.03 × 10−3 | 0.86046 | 1042 | 4.22 × 10−3 | 1061.3 |
WM of W2 | 2.179 | 3.66 × 10−5 | 0.91004 | 19.16 | 9.10 × 10−4 | 0.77121 | 1037 | 2.36 × 10−3 | 1056.16 |
Weight Percentage (wt.%) | Fe | Mn | Si | Cl | C | O |
---|---|---|---|---|---|---|
Corrosion-product-free site of BM | 70.48 | 1.25 | 0.13 | 0.09 | 8.91 | 18.48 |
Products of BM | 60.72 | 0.51 | 0.1 | 0.11 | 6.56 | 31.4 |
Corrosion-product-free site of W1 | 87.18 | 1.26 | 0.27 | 0.02 | 7.85 | 3.23 |
Products of W1 | 53.94 | 0.55 | 0.11 | 0.47 | 8.07 | 36.03 |
Corrosion-product-free site of W2 | 88.77 | 1.63 | 0.22 | 0.02 | 7.13 | 1.12 |
Products of W2 | 63.8 | 0.48 | 0.09 | 0.35 | 3.53 | 31.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, T.; Zhang, X.; Yang, H.; Zhou, P.; Chen, F. Microstructural Evolution and Micro-Corrosion Behaviour of Flash-Welded U71Mn Joints as a Function of Post-Weld Heat Treatment. Materials 2023, 16, 5437. https://doi.org/10.3390/ma16155437
Liao T, Zhang X, Yang H, Zhou P, Chen F. Microstructural Evolution and Micro-Corrosion Behaviour of Flash-Welded U71Mn Joints as a Function of Post-Weld Heat Treatment. Materials. 2023; 16(15):5437. https://doi.org/10.3390/ma16155437
Chicago/Turabian StyleLiao, Tingting, Xi Zhang, He Yang, Pan Zhou, and Fei Chen. 2023. "Microstructural Evolution and Micro-Corrosion Behaviour of Flash-Welded U71Mn Joints as a Function of Post-Weld Heat Treatment" Materials 16, no. 15: 5437. https://doi.org/10.3390/ma16155437
APA StyleLiao, T., Zhang, X., Yang, H., Zhou, P., & Chen, F. (2023). Microstructural Evolution and Micro-Corrosion Behaviour of Flash-Welded U71Mn Joints as a Function of Post-Weld Heat Treatment. Materials, 16(15), 5437. https://doi.org/10.3390/ma16155437