Non-Destructive Evaluation of Thermal Aging in EPDM Rubber Using Electromagnetic Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Samples
2.2. Eddy Current Setup
2.3. Electrical Impedance Analysis
2.4. Mechanical Compression Set, Accelerated Aging, and Hardness Measurements
3. Results and Discussion
3.1. Eddy-Current Measurements
3.2. Electrical Impedance Measurements
3.3. Hardness Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Syao, O.; Malysheva, G.V. Properties and Application of Rubber-Based Sealants. Polym. Sci. Ser. D 2014, 7, 222–227. [Google Scholar] [CrossRef]
- South, J.T.; Case, S.W.; Reifsnider, K.L. Effects of Thermal Aging on The Mechanical Properties of Natural Rubber. Rubber Chem. Technol. 2003, 76, 785–802. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khan, F.; Kaiser, M.S.; Ahmed, S.R. Effect of Thermal Ageing on Mechanical Behavior of Synthetic and Natural Rubber Dominated Short Flat Bars. AIP Conf. Proc. 2018, 1980, 030021. [Google Scholar]
- Choi, J.-H.; Kang, H.J.; Jeong, H.-Y.; Lee, T.-S.; Yoon, S.-J. Heat Aging Effects on the Material Property and the Fatigue Life of Vulcanized Natural Rubber, and Fatigue Life Prediction Equations. J. Mech. Sci. Technol. 2005, 19, 1229–1242. [Google Scholar] [CrossRef]
- Eatah, A.I.; Ghani, A.A.; Hashem, A.A. Thermal Ageing Dependence of Electrical Conductivity for Butyl Rubber (IIR) Loaded with HAF Carbon Black. Polym. Degrad. Stab. 1989, 26, 145–150. [Google Scholar] [CrossRef]
- Schwartz, G.A.; Cerveny, S.; Marzocca, Á.J.; Gerspacher, M.; Nikiel, L. Thermal Aging of Carbon Black Filled Rubber Compounds. I. Experimental Evidence for Bridging Flocculation. Polymer 2003, 44, 7229–7240. [Google Scholar] [CrossRef]
- Abdel-Bary, E.M.; Amin, M.; Hassan, H.H. Factors Affecting Electrical Conductivity of Carbon Black-Loaded Rubber. I. Effect of Milling Conditions and Thermal-Oxidative Aging on Electrical Conductivity of Haf Carbon Black-Loaded Styrene–Butadiene Rubber. J. Polym. Sci. Polym. Chem. Ed. 1977, 15, 197–201. [Google Scholar] [CrossRef]
- Yan, X.; Guo, J.; Jiang, X. The Microwave-Absorption Properties and Mechanism of Phenyl Silicone Rubber/CIPs/Graphene Composites after Thermal-Aging in an Elevated Temperature. Sci. Rep. 2022, 12, 4385. [Google Scholar] [CrossRef]
- Mattson, B.; Stenberg, B. Electrical Conductivity of Thermo-Oxidatively-Degraded EPDM Rubber. Rubber Chem. Technol. 1992, 65, 315–328. [Google Scholar] [CrossRef]
- García-Martín, J.; Gómez-Gil, J.; Vázquez-Sánchez, E. Non-Destructive Techniques Based on Eddy Current Testing. Sensors 2011, 11, 2525–2565. [Google Scholar] [CrossRef] [Green Version]
- Mizukami, K.; Mizutani, Y.; Todoroki, A.; Suzuki, Y. Design of Eddy Current-Based Dielectric Constant Meter for Defect Detection in Glass Fiber Reinforced Plastics. NDT Ampmathsemicolon Int. 2015, 74, 24–32. [Google Scholar] [CrossRef]
- Jash, P.; Parashar, R.K.; Fontanesi, C.; Mondal, P.C. The Importance of Electrical Impedance Spectroscopy and Equivalent Circuit Analysis on Nanoscale Molecular Electronic Devices. Adv. Funct. Mater. 2021, 32, 2109956. [Google Scholar] [CrossRef]
- Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-Based Polymer Nanocomposites. Polymer 2011, 52, 5–25. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Abdala, A.A.; Macosko, C.W. Graphene/Polymer Nanocomposites. Macromolecules 2010, 43, 6515–6530. [Google Scholar] [CrossRef]
- Govindaraj, P.; Sokolova, A.; Salim, N.; Juodkazis, S.; Fuss, F.K.; Fox, B.; Hameed, N. Distribution States of Graphene in Polymer Nanocomposites: A Review. Compos. Part B Eng. 2021, 226, 109353. [Google Scholar] [CrossRef]
- Zhang, H.; Xing, W.; Li, H.; Xie, Z.; Huang, G.; Wu, J. Fundamental Researches on Graphene/Rubber Nanocomposites. Adv. Ind. Eng. Polym. Res. 2019, 2, 32–41. [Google Scholar] [CrossRef]
- ISO 815-1; Rubber, Vulcanized or Thermoplastic—Determination of Compression Set—Part 1: At Ambient or Elevated Temperatures. International Organization for Standardization: Geneva, Switzerland, 2019.
- ASTM D395B; Standard Test Methods for Rubber Property Compression Set. ASTM International: West Conshohocken, PA, USA, 2018.
- EN ISO 868; Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). International Organization for Standardization: Geneva, Switzerland, 2003.
- ASTM D2240; Standard Test Method for Rubber Property—Durometer Hardness. ASTM International: West Conshohocken, PA, USA, 2021.
- Bartosik, D.; Szadkowski, B.; Kuśmierek, M.; Rybiński, P.; Mirkhodzhaev, U.; Marzec, A. Advanced Ethylene-Propylene-Diene (EPDM) Rubber Composites Filled with Raw Silicon Carbide or Hybrid Systems with Different Conventional Fillers. Polymers 2022, 14, 1383. [Google Scholar] [CrossRef]
- Fritzsche, J.; Klüppel, M. Structural Dynamics and Interfacial Properties of Filler-Reinforced Elastomers. J. Phys. Condens. Matter 2011, 23, 035104. [Google Scholar] [CrossRef]
- Mohanraj, G.T.; Chaki, T.K.; Chakraborty, A.; Khastgir, D. Measurement of AC Conductivity and Dielectric Properties of Flexible Conductive Styrene–Butadiene Rubber-Carbon Black Composites. J. Appl. Polym. Sci. 2007, 104, 986–995. [Google Scholar] [CrossRef]
- Mallik, H.; Gupta, N.; Sarkar, A. Anisotropic Electrical Conduction in Gum Arabica—A Biopolymer. Mater. Sci. Eng. C 2002, 20, 215–218. [Google Scholar] [CrossRef]
- Kueseng, P.; Sae-oui, P.; Sirisinha, C.; Jacob, K.I.; Rattanasom, N. Anisotropic Studies of Multi-Wall Carbon Nanotube (MWCNT)-Filled Natural Rubber (NR) and Nitrile Rubber (NBR) Blends. Polym. Test. 2013, 32, 1229–1236. [Google Scholar] [CrossRef]
CB (wt%) | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 | 37.0 | 40.0 | - | - | - | - |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GP25 (wt%) | - | - | - | - | - | - | - | - | 0 | 0.5 | 3.0 | 5.5 |
EPDM Polymer 1 (phr *) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Carbon Black N 550 (phr) | 12 | 20 | 31.2 | 46.7 | 70 | 109 | 133 | 133 | 70 | 68.8 | 63 | 57.1 |
2Dx GP25 (phr) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.2 | 7 | 12.9 |
Paraffinic oil (phr) | 0 | 5 | 16.2 | 31.7 | 55 | 94 | 118 | 91 | 55 | 55 | 55 | 55 |
Stearic acid (phr) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Activator EDMA (phr) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Peroxide Di(tert-butylperoxyisopropyl) benzene (phr) | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepehri, S.; Trey, S.; Lake, K.; Cumming, C.; Johansson, C. Non-Destructive Evaluation of Thermal Aging in EPDM Rubber Using Electromagnetic Techniques. Materials 2023, 16, 5471. https://doi.org/10.3390/ma16155471
Sepehri S, Trey S, Lake K, Cumming C, Johansson C. Non-Destructive Evaluation of Thermal Aging in EPDM Rubber Using Electromagnetic Techniques. Materials. 2023; 16(15):5471. https://doi.org/10.3390/ma16155471
Chicago/Turabian StyleSepehri, Sobhan, Stacy Trey, Kajsa Lake, Carl Cumming, and Christer Johansson. 2023. "Non-Destructive Evaluation of Thermal Aging in EPDM Rubber Using Electromagnetic Techniques" Materials 16, no. 15: 5471. https://doi.org/10.3390/ma16155471
APA StyleSepehri, S., Trey, S., Lake, K., Cumming, C., & Johansson, C. (2023). Non-Destructive Evaluation of Thermal Aging in EPDM Rubber Using Electromagnetic Techniques. Materials, 16(15), 5471. https://doi.org/10.3390/ma16155471